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At imaginary values of the chemical potential µ QCD shows an interesting phase structuredue
to its Roberge-Weiss (RW) symmetry. This can be used to constrain QCD at real µ , where the
sign problem prevents direct simulations from first principles. Most Lattice QCD (LQCD) inves-
tigations of this region have been performed with staggered fermions. In particular, it was found
that the RW endpoint, where the RW transition changes from first order to a crossover, depends
nontrivially on the quark mass: For high and low masses, it is a triple point, changing to a second
order point for intermediate masses. These two regions are separated by tricritical points. A con-
firmation of these findings using Wilson fermions is presented. In addition, good agreement of a
heavy quark effective theory of LQCD for the tricritical point in the heavy mass region with the
full LQCD simulations was found.
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1. Introduction

The QCD phase diagram at finite temperature T and chemical potential µ is currently under
investigation both theoretically and experimentally, in particular the existence of a critical endpoint
(CEP) is of interest. At zero µ , QCD shows a rich phase structure as the quark masses are varied.
For infinitely heavy and three flavours of massless quarks, there are first order deconfinement and
chiral phase transitions, respectively, at critical temperatures Tc. In the vicinity of these limits,
there are regions of first order transitions which are separated by Z(2) second order lines from a
crossover region, where the physical point is located. The nature of the transition in the Nf = 2
chiral limit, i.e. whether it is a first or second order transition, is not settled yet. A recent overview
is given in [2].

At finite (real) chemical potential, however, the fermion determinant becomes complex. This
so-called sign problem prevents direct Lattice QCD (LQCD) studies in this region. On the contrary,
at purely imaginary values of the chemical potential µI there is no sign problem and standard sim-
ulation techniques can be applied in a straight-forward way. In addition, QCD exhibits interesting
features at µI , which can be used to constrain the phase diagram at zero and real µ .

2. QCD at imaginary µ

At finite temperature T and zero chemical potential, gauge transformations Ω have to fulfill
periodic boundary conditions in the temporal direction. However, for infinitely heavy quarks the
canonical partition function of QCD, Zcan(T ), is also invariant if Ω picks up a constant phase z,

Ω(~x,τ) = z Ω(~x,τ +1/T ) . (2.1)

z is an element of the center of SU(Nc), Z(Nc) =
{

z ∈ SU(Nc)|z = exp(i 2πk
Nc

) ,k ∈ N
}

. This is
called center symmetry. The breaking of the symmetry is indicated by the Polyakov Loop:

L(~x) = TrP exp
(
−ig

∫ 1/T

0
dτA0(~x)

)
. (2.2)

As the loop winds around the temporal direction, it picks up a phase from Z(Nc). A particular
center sector can be identified by its phase: L = |L|eiφ . If center symmetry is realised, L will cycle
through the different Z(Nc) sectors and the phases average to zero. Thus, its expectation value 〈L〉
vanishes, too. However, if the symmetry is spontaneously broken, 〈L〉 6= 0. For infinitely heavy
quarks, this is an order parameter for deconfinement.

At finite µ , the grand canonical partition function Z(T,µ) can be related to the canonical one
via the fugacity expansion:

Z(T,µ) = ∑
n

(
eβ µ

)n
Zcan(T ) , (2.3)

where the quark number n runs from positive to negative integer values. This implies that Z(T,µ) =
Z(T,−µ). Considering purely imaginary chemical potential, µ = iθ/β = iθT , one sees that Z has
a periodicity of 2π . Center symmetry is broken explicitly by a finite quark mass: ψ picks up a phase
factor z. However, this phase can be accounted for by an appropriate shift in µ: The transformations

Aµ −→ΩAµΩ
†− i

g

(
∂µΩ

)
Ω

†, ψ −→Ω ψ, θ −→ θ +
2πk
Nc

,k ∈ N , (2.4)
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Figure 1: Schematic phase diagram for QCD at imaginary chemical potential (after [9]). The
solid vertical lines show the first order RW-transitions at µc

I between the different Z(Nc) sec-
tors, which are indicated by the phase of the Polyakov Loop. Below Tc, the RW transitions are
crossover. Beginning in the top left corner, the quark mass is decreased clockwise, changing the
chiral/deconfinement phase transition as indicated.

leave Z invariant and unveil a periodicity of 2π/Nc:

Z (θ) = Z (θ +2πk/Nc ) ,k ∈ N . (2.5)

This is called extended center symmetry or Roberge-Weiss (RW) symmetry [1]. An order param-
eter can be defined by introducing the modified Polyakov loop L̂ = Leiθ = |L̂|eiϕ . Its phase again
indicates the Z(Nc) sector the system is currently in and takes on the values

〈ϕ〉= k(2π/Nc) ,k = 0,1...,Nc−1 . (2.6)

The general phase structure was worked out in [1] and is shown in Figure 1. At critical values

µ
c
I = i (2k+1) πT/Nc ,k = 0,1 . . .Nc−1 , (2.7)

there is a phase transition between adjacent Z(Nc) sectors. Note that due to the periodicity of the
partition function of 2π/Nc the values of µc

I are physically equivalent. At low temperatures the
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Figure 2: a) RW endpoint as function of mass (after [9]). b) Reweighted Binder Cumulant of LIm

at κ = 0.07 for various Nσ , including the fits to the finite size scaling form.

transition is a crossover, at high temperatures first order. Consequently, these two regions meet
in the Roberge-Weiss (RW) endpoint. This point is connected to the deconfinement and chiral
transitions at µ = 0. In Nf = 2 and 3 staggered simulations [6, 8] it was found that these transitions
extend into the µI region and meet the first order RW line in the RW endpoint. Thus, the nature of
the endpoint is non-trivial and depends on Nf and the fermion mass. This is indicated in the figure:
For very high masses, the deconfinement transition at µ = 0 is of first order and the RW endpoint is
a triple point, as the RW transition and two first order deconfinement transitions meet there. As the
mass is lowered, the µ = 0 transition passes through the second order line and becomes a crossover.
This carries over to the µI region where the second order point approximates the RW endpoint from
µ = 0, ending the first order line. The latter is shortened, until it eventually meets the RW point. At
this point one has a tricritical point. The same mechanism happens when coming from the chiral
limit, increasing the mass, at least for Nf = 2,3 [6, 8].

Looking only at the nature of the transition in the RW endpoint, one has a triple point for
high masses, which for some tricritical mass becomes a second order endpoint. At sufficiently low
masses, the endpoint becomes a triple point again, where the first order RW line now meets with two
first order chiral transitions lines. This is depicted in Figure 2a. A picture similar to the situation
at µ = 0 emerges naturally: For low and high masses there are regions of triple points, which are
bounded from a second order region by tricritical lines. For Nf = 2+1 the two planes at µ = 0 and
µ = iT π/Nc must be connected analytically, in particular, the Z(2) lines at µ = 0 become surfaces,
meeting the tricritical lines at the RW value. The curvature of the surfaces allows for conclusions
about the physical point at real µ . It was found [9] that both the chiral and deconfinement critical
surfaces will bend away from the physical point for real µ , which disfavores a CEP. Mapping the
(tri)critical surfaces may also allow to clarify the situation in the Nf = 2 chiral limit, see e.g. [10].

3. The Roberge-Weiss transition with Wilson fermions

LQCD studies at µI have been carried out predominantly using staggered fermions, in recent
years results with Wilson fermions have been presented, too, for example [13, 12]. In the following,
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transition type Crossover 2o 3D Ising 1o triple point tricritical
B4(X) 3 1.604 1.5 2

ν - 0.6301(4) 1/3 1/2

Table 1: Values for the Binder cumulant B4(X) [9] and critical exponent ν for different phase
transitions [8].

the nature of the RW endpoint as a function of the fermion mass will be addressed (Figure 2a). This
will be done using two flavours of standard Wilson fermions together with the Wilson gauge action
and close to the analysis of simulations with three flavours of staggered fermions described in [6].
The confirmation of the structure found in staggered simulations is of high interest as it is used to
address the nature of the chiral transition at µ = 0. Additionally, the value of the tricritical mass in
the heavy mass region is predicted by an effective theory of LQCD for heavy quarks based on the
hopping expansion [11], which states:

κ
tric
heavy = 0.1048±0.0008 . (3.1)

Full LQCD results offer a direct check of the predictive power of the model.
The simulations were carried out utilising CL2QCD [3] on LOEWE-CSC [4] and SANAM [5].

A fixed temporal extent of Nτ = 4 and µc
I = iπT have been chosen. Simulations at 24 masses

ranging from κ = 0.03 . . .0.165 have been performed. For each κ , at least three, sometimes four
or five spatial volumes have been simulated, ranging from Nσ = 8 to 20. At least ten β -values
with ∆β = 0.001 around Tc have been simulated for all lattice sizes. In each β run, 35k HMC
trajectories of unit length have been produced after 5k trajectories of thermalisation. In some cases
this number has been extended to 75k. The acceptance rate in each run was of the order of 75%.
Additional β -points have been filled in using Ferrenberg-Swendsen reweighting [16].

The transition at the RW endpoint is a true phase transition only in the thermodynamic limit
V → ∞. Thus, to extract it from finite volume LQCD simulations, an extrapolation to the thermo-
dynamic limit must be applied (finite-size scaling). This is done by analysing the so-called Binder
cumulant [15]. For a general observable X , it is defined as

B4(X) = 〈(X−〈X〉)4〉/〈(X−〈X〉)2〉2 . (3.2)

B4 indicates the order of the transition by its value in the thermodynamic limit (see table 1). The
finite-size corrections can be described by the ansatz [6]

B4(β ,Nσ ) = B4(β ,∞)+a1(β −βc)N
1/ν

σ +a2((β −βc)N
1/ν

σ )2 + . . . . (3.3)

Figure 2b shows the functional behaviour of B4 as the spatial volume is increased. One sees that
B4 takes on higher values at lower β , going to lower values at higher β , and gets steeper as the
volume is increased. This is expected as below and above βc a crossover and first order region
is located, which have a B4 value of 3 and 1.5 in the thermodynamic limit, respectively. In fact,
approaching the thermodynamic limit B4 should become a step function. The intersection of the
three curves is the location of the RW endpoint. The scaling form (3.3) can be fitted to the B4

data. The obtained value for B4(β ,∞) is found to be somewhat higher then the universal values
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Figure 3: Fitted critical exponent ν as a function of κ . Also shown are values of ν for certain
universality classes as well as the prediction for the tricritical mass from the effective theory [11].

because of finite volume corrections, in agreement with [6]. The critical exponent ν , however, can
be extracted quite well. This procedure is carried out for all simulated κ and the result of this
effort can be seen in Figure 3. The findings with Wilson fermions confirm the staggered results.
The extracted value of ν takes on first order values for small κ (high m). The prediction of the
effective theory for this point is in good accordance with the observed data. As κ is increased, it
passes through the tricritical value until it takes on second order values. As the mass is decreased
further, a reverse behaviour can be seen: ν approaches the first order value again, passing through
the tricritical value at κ ≈ 0.155.

A similar study has been carried out recently in [13], however, extracting the order of the
transition from the scaling of the susceptibility of the imaginary part of L. The authors simulated at
various κ ≥ 0.155 and find that these all lie in the first order region. This is partly confirmed by the
findings presented here, except that in in [13], no analysis for the tricritical point have been carried
out.

4. Summary and Perspectives

QCD at imaginary values of the chemical potential µI shows an interesting phase structure,
which is currently used to constrain QCD at real µ , where direct simulations from first principles
are prevented by the sign problem. Most LQCD investigations of this region have been performed
with staggered fermions. In particular, it was found that the RW endpoint depends nontrivially on
the quark mass, figure 2a. A confirmation of these findings with Wilson fermions was presented.
In addition, good agreement of an heavy quark effective theory of LQCD with the full LQCD
simulations was found. In the future, these investigations can be extended to higher Nτ in order
to investigate cut-off effects. In addition, a study of the Aoki phase at these parameters would be
interesting.
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