
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
0
0

Localised distributions in complex Langevin
dynamics

Pietro Giudice∗

Universität Münster, Institut für Theoretische Physik, Münster, Germany
E-mail: p.giudice@uni-muenster.de

Gert Aarts
Department of Physics, College of Science, Swansea University, Swansea, United Kingdom
E-mail: g.aarts@swan.ac.uk

Erhard Seiler
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) München, Germany
E-mail: ehs@mppmu.mpg.de

Complex Langevin dynamics can be used to perform numerical simulations of theories with a

complex action. In order to justify the procedure, it is important to understand the properties of

the real and positive distribution, which is effectively sampled during the stochastic process. In

the context of a simple model, we study this distribution andrelate the results to the recently

derived criteria for correctness. We demonstrate analytically that if the distribution has support

only on a strip in the complexified configuration space, correct results are expected.
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1. Introduction

Numerical simulations of lattice field theories with a complex action are not possible with stan-
dard Monte Carlo methods. Complex Langevin (CL) dynamics provides an appealing alternative
since it does not rely on importance sampling, see Refs. [1, 2] for two recent reviews. In the recent
past, the important role played by the properties of the realand positive probability distribution in
the complexified configuration space, which is effectively sampled during the Langevin process,
has been clarified [3, 4]. An important conclusion was that this distribution should be sufficiently
localised in order for CL to yield valid results. Moreover, aset of criteria for correctness, which
have to be satisfied in order for CL to be reliable, has been determined. In this contribution we
aim to combine the insights that can be distilled from the criteria for correctness discussed above
with the explicit solution of the Fokker-Planck equation (FPE), adapting the method employed in
Ref. [5]. A comprehensive version of this work has been published [6].

2. Complex Langevin dynamics and criteria for correctness

The model we have studied in this work is described by this simple partition function:

Z =

∫ ∞

−∞
dxe−S, S=

1
2

σx2+
1
4

λx4, (2.1)

where the parameters in the action are complex-valued. Thismodel has been studied shortly after
CL was introduced [7, 8, 9], but no complete solution was given. We takeλ real and positive,
so that the integral exists, whileσ is taken complex. Analytical results are available: a direct
evaluation of the integral yieldsZ =

√

4ξ/σ eξ K− 1
4
(ξ ), whereξ = σ2/(8λ ) andKp(ξ ) is the

modified Bessel function of the second kind. Moments〈xn〉 can be obtained by differentiating with
respect toσ .

We evaluate expectation values numerically, by solving a CLprocess. This is done by com-
plexification of the Langevin equation:

ż=−∂zS(z)+η , (2.2)

i.e. we introduce:
z= x+ iy, η = ηR+ iηI, σ = A+ iB. (2.3)

The dot in Eq. (2.2) denotes differentiating with respect tothe Langevin timet and the (Gaussian)
noise satisfies

〈η(t)η(t ′)〉= 2δ (t − t ′). (2.4)

The normalisation of the real and imaginary noise components is given by

〈ηR(t)ηR(t
′)〉= 2NRδ (t − t ′), 〈ηI(t)ηI(t

′)〉= 2NIδ (t − t ′), 〈ηR(t)ηI(t
′)〉= 0, (2.5)

with NR−NI = 1. HereNI ≥ 0 is a free parameter, which can be varied.
Expectation values are obtained by averaging over the noise; they evolve according to

〈O〉P(t) =

∫

dxdyP(x,y; t)O(x+ iy), (2.6)
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Figure 1: (Left) Real and imaginary parts of the expectation values1
n〈zn〉 and criteria for correctnessCn =

1
n〈L̃zn〉 versusn at σ = 1+ i andλ = 1 for real noise (NI = 0). The horizontal lines indicate the exact value.
(Right) Criteria for correctness as a function ofNI for n= 4,6.

where the distributionP(x,y; t) satisfies the FPE

Ṗ(x,y; t) = LTP(x,y; t), (2.7)

with the FP operator (Kx =−Re∂zS(z) andKy =− Im∂zS(z) are the drift terms):

LT = ∂x (NR∂x−Kx)+∂y(NI∂y−Ky) . (2.8)

In CL dynamics, convergence to the correct result is not guaranteed. A necessary condition is
that the so-calledcriteria for correctnessare satisfied [3, 4]:

CO ≡
〈

L̃O(z)
〉

= 0, (2.9)

in principle for a complete set of holomorphic observablesO(z). HereL̃ is the Langevin operator

L̃ = [∂z− (∂zS(z))]∂z. (2.10)

We consider as observablesOn(z) = 1
nzn, with n even.

In Fig. 1 (Left) CL results are shown for the real and imaginary parts of the observables1n〈zn〉
and for the criteria for correctnessCn =

1
n〈L̃zn〉, for n= 2,4,6,8. The figure shows the result for

real noise,NI = 0, and parametersσ = 1+ i andλ = 1: all expectation values agree with the exact
result, denoted with the horizontal lines, and the criteriafor correctness are all consistent with zero,
as it should be. Moreover, we have studied how the observables and the criteria for correctness
depend on the amount of complex noise. For smallNI the observables withn= 2,4 appear to be
consistent with the exact result, while for largerNI they start to deviate. Problems can be detected
by considering higher moments. For smallNI the observables (withn ≥ 6) and the criteria (with
n≥ 4) are only marginally consistent with the expected results, while for largerNI they suffer from
large fluctuations, see Fig. 1 (Right), and can no longer be sensibly determined. According to the
analytical justification [3, 4], this implies that the results from CL cannot be trusted in the presence
of complex noise.
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3. Probability distributions

In this section we study the distributionP(x,y) in the complexified space. It can be obtained
directly collecting histograms of the distribution duringthe CL evolution; this method can be easily
extended to multi-dimensional integrals and field theories. A different method to determineP(x,y)
was followed in Ref. [5]: the idea is to expand the distribution in terms of a truncated set of basis
functions and solve the resulting matrix problem numerically. If we denote the eigenvalues of−LT

with κ and the eigenfunctions withPκ(x,y), what we have to do is to solve the following eigenvalue
problem:−LTPκ(x,y) = κPκ(x,y). The time-dependent distribution can then be written as:

P(x,y; t) = P0(x,y)+ ∑
κ 6=0

e−κtPκ(x,y), (3.1)

whereP0 is the ground state, i.e. the one with eigenvalueκ = 0. Note that, in order forP0(x,y) to
be the equilibrium distribution, it is necessary that for all other eigenvalues Reκ > 0.

Following Ref. [5], we expandP(x,y) in a basis of Hermite functions, i.e.

P(x,y) =
NH−1

∑
k=0

NH−1

∑
l=0

cklHk
(√

ωx
)

Hl
(√

ωy
)

, (3.2)

whereω is a variational parameter appearing in the harmonic oscillator eigenfunctions, andNH

indicates the number of Hermite functions included in the truncated basis. The coefficientsckl

have to be determined; this is explained in detail in Ref. [6].
We start with the case of complex noise,NI = 1. The parameters in the action are taken as

σ = 1+ i andλ = 1, and we consider a basis with 30≤ NH ≤ 150 Hermite functions and different
values ofω . In the limit of largeNH the results are expected to be independent of the value ofω . In
practice however, we find that for finiteNH the parameterω plays the role of a tuning parameter: in
particular, whenω is too small, there are eigenvalues with a negative real part. We find that there is
always anω interval for which: i) there is an eigenvalue consistent with 0; ii) the other eigenvalues
are in the right half-plane; iii) the reconstructed ground state distribution is stable under variation
of NH andω . The smallest 15 eigenvalues are shown in Fig. 2 (Left): for theω values shown here,
all eigenvalues are in the right half-plane and the spectrumaround the origin is to a good extent
independent ofω . The reconstructed distributionP(x,y), using Eq. (3.2), is shown in Fig. 2 (Right).
We find a smooth distribution with a double peak structure. InFig. 3 (Left) we present the partially
integrated distributionsPy(y) =

∫ ∞
−∞ dxP(x,y) on a logarithmic scale. Besides presenting results

for variousω values, we also show the histogram obtained during a CL simulation. We observe
an acceptable agreement between the CL results and the solution of the FPE forω ∼ 1.5,2, down
to a relative size of 10−6, after which the FP solution can no longer cope. We interpretthis as a
manifestation of the truncation. Whenω is taken too large, the disagreement occurs for smaller
values ofy. Moreover, we have verified that both partially integrated distributionsPx(y) andPy(y)
are characterised by a power decay with power 5. In the case ofreal noise,NI = 0, we note that
in all cases there is an eigenvalue at (or close to) the origin, but in general convergence is much
harder to establish from a study of the eigenvalues alone. Convergence ofPy as ω is increased
is demonstrated in Fig. 3 (Right) and we observe that a large value ofω is required,ω ∼ 50. It
is of course expected that the chosen value ofω eventually becomes irrelevant, but for finiteNH
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Figure 2: (Left) Eigenvalues of the FP operator−LT for complex noise, withNI = 1, magnified around the
smallest eigenvalues, for various values ofω , atσ = 1+ i, λ = 1, andNH = 150. (Right) DistributionP(x,y)
in thexy-plane for complex noise, withNI = 1 andω = 1.5.
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Figure 3: Partially integrated distributionsPy(y) for different values ofω with complex noise,NI = 1 (left
plot) and real noise,NI = 0 (right plot). In both cases the noisy (black) data was obtained by a CL simulation.

keepingω as a tuning parameter is essential. The distribution is verywell localised and appears to
drop to 0 aroundy= 0.28. The distributionPx(x), in contrast to the case of complex noise, is now
characterised by an exponential rather than a power decay.

We conclude that for this choice of parameters (σ = 1+ i andλ = 1) the decay in the case of
real noise is manifestly different compared to complex noise. In the latter we found a power decay,
resulting in ill-defined moments〈zn〉 whenn > 4, while here we find exponential decay in thex
direction and, as we will see below, in they direction support only inside a strip. As a result there
is no problem in computing higher moments, since they are allwell-defined.

4. Interpretation

The classical flow diagram is shown in Fig. 4 (Left), forσ = 1+ i and λ = 1. We show
the direction of the classical force by an arrow pointing in the direction(Kx(x,y),Ky(x,y)). The
arrows are normalised to have the same length. There are three fixed points, whereKx = Ky = 0:
an attractive point at the origin and two repulsive fixed points. The flow is directed towards the
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Figure 4: (Left) Classical flow in thexy-plane, forσ = 1+ i andλ = 1. The attractive/repulsive fixed points
are indicated with the open/filled circles. The full lines indicate whereKy(x,y) = 0. The horizontal dashed
lines indicate the strip in which the CL process takes place in the case of real noise. (Right) Distribution
Py(y) for different values ofB, with NI = 0, atσ = 1+ iB andλ = 1, obtained with CL; the vertical line
indicates the boundary of the strip forB= 1.7. For largerB values, there is no longer a boundary.

origin, provided that|y| is not too large. This can be made more precise by studying whereKy(x,y)
changes sign: this is indicated in the classical flow diagramwith full (blue) lines. We now realise
that along the horizontal dashed lines, which are determined by the extrema of the centre curve
whereKy = 0 (y = ±0.3029 in this case), the flow is always pointing inwards, i.e. towards the
real axis. In absence of a noise component in the vertical direction, this creates a barrier for the
Langevin evolution beyond which it cannot drift. We conclude therefore that in the case of real
noise the process takes place in the strip determined by−0.3029< y< 0.3029. This is consistent
with the conclusions drawn above from the histograms and theFPE solution of the distribution
P(x,y). In the presence of complex noise, this conclusion no longerholds and the entirexy-plane
can be explored.

As shown in Ref. [6] it is possible to make the argument based on classical flow presented
above rigorous and show directly from the FPE that the equilibrium distributionP(x,y) is strictly
zero in strips in thexy-plane. To summarise, for real noise, we find the following:

1. when 3A2 > B2, P(x,y) = 0 for y2 > A
2λ

(

1−
√

1− B2

3A2

)

;

2. when 3A2 < B2, there are no restrictions onP(x,y).

Interestingly, the derivation in Ref. [6] demonstrates that when 3A2 < B2, i.e. in absence of strips,
one may therefore expect a breakdown of CL with real noise, similar as with complex noise. This
is indeed what happens: as shown in Fig. 4 (Right) where the distributionPy(y) is plotted asB is
increased. The delocalisation has a detrimental effect on the results of the CL process. Studying
the moments and the criteria for correctness in this case, weobserve that increasingB has a similar
effect as increasingNI: moreover a power law takes place again with power 5. In addition in
Ref. [6], we have shown that it is possible to understand the universal power decay directly from
the FPE: as a consequence, for large|x| and |y|, the distribution decays as a power, according to
P(x,y)∼ (x2+y2)−3. We conclude that in absence of strips a universal power law decay is present,
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which results in a breakdown of the formal justification [3, 4] and wrong or wildly fluctuating
results in practice.

5. Conclusion

In order to justify the results obtained with complex Langevin dynamics, it is necessary that
the probability distribution is sufficiently localised in the complexified configuration space. Here
we have studied properties of this distribution via a numberof methods, in the case of a simple
model. In this case the FPE can be solved explicitly, via an expansion in a truncated set of basis
functions. However, it is still a nontrivial problem and perhaps the best way to find the distribution
is by brute force, i.e. during the CL simulation. We have demonstrated that the essential insight can
already be obtained from a combination of histograms of partially integrated distributions and the
criteria for correctness, which gives a consistent pictureof the dynamics. These tools are readily
available in field theory.

Recently, a new approach, based on deforming the integration contour of the path integral into
the complex plane and performing Monte Carlo simulations onthe so-called Lefschetz thimbles,
has been introduced [10, 11]. A comparison between CL and theLefschetz thimble for the model
considered here, can be found in Ref. [12].

Finally, we remark that our conclusions are also immediately applicable to nonabelian SU(N)
gauge theories [13], for which gauge cooling [2, 14] provides a means to control the distribution in
SL(N,C), a possibility not present in simpler models.
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