PROCEEDINGS

OF SCIENCE

Localised distributions in complex Langevin
dynamics

Pietro Giudice*
Universitat Munster, Institut fir Theoretische Physik,idter, Germany
E-mail: p. gi udi ce@ni - nuenst er. de

Gert Aarts
Department of Physics, College of Science, Swansea UitiyeSwansea, United Kingdom
E-mail: g. aart s@wan. ac. uk

Erhard Seiler
Max-Planck-Institut fur Physik (Werner-Heisenberg-ing} Minchen, Germany
E-mail: ehs @mppnu. nmpg. de

Complex Langevin dynamics can be used to perform numerigallations of theories with a
complex action. In order to justify the procedure, it is imjpat to understand the properties of
the real and positive distribution, which is effectivelyrgaled during the stochastic process. In
the context of a simple model, we study this distribution aeldte the results to the recently
derived criteria for correctness. We demonstrate analjyithat if the distribution has support
only on a strip in the complexified configuration space, atiresults are expected.

31st International Symposium on Lattice Field Theory LAOHR013
July 29 - August 3, 2013
Mainz, Germany

“Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Localised distributions in complex Langevin dynamics Pietro Giudice

1. Introduction

Numerical simulations of lattice field theories with a comphction are not possible with stan-
dard Monte Carlo methods. Complex Langevin (CL) dynamicwiples an appealing alternative
since it does not rely on importance sampling, see Refs] fbr2wo recent reviews. In the recent
past, the important role played by the properties of theaadlpositive probability distribution in
the complexified configuration space, which is effectivedynpled during the Langevin process,
has been clarified [3, 4]. An important conclusion was the distribution should be sufficiently
localised in order for CL to yield valid results. Moreoverset of criteria for correctness, which
have to be satisfied in order for CL to be reliable, has beeerghéied. In this contribution we
aim to combine the insights that can be distilled from théeda for correctness discussed above
with the explicit solution of the Fokker-Planck equatiorP@), adapting the method employed in
Ref. [5]. A comprehensive version of this work has been shigld [6].

2. Complex Langevin dynamicsand criteria for correctness

The model we have studied in this work is described by thigpkrpartition function:

o 1, 1
Z:/_mdxe’s, S= 50X+ A, 2.1)

where the parameters in the action are complex-valued. mibdel has been studied shortly after
CL was introduced [7, 8, 9], but no complete solution was givéVe takeA real and positive,
so that the integral exists, whilg is taken complex. Analytical results are available: a direc
evaluation of the integral yieldg = /4& /o € K_%(E), where& = 02/(8)) andKp(§) is the
modified Bessel function of the second kind. Moment$ can be obtained by differentiating with
respect tag.

We evaluate expectation values numerically, by solving ap@icess. This is done by com-
plexification of the Langevin equation:

z= —0zs(z)+’7> (22)

i.e. we introduce:
Z=X+1ly, n=nr+in, o=A+IiB. (2.3)

The dot in Eq. (2.2) denotes differentiating with respedhiLangevin timé¢ and the (Gaussian)
noise satisfies

(n(t)n(t')) =20(t—t'). (2.4)
The normalisation of the real and imaginary noise compansrgiven by

(NRMONR)) =2NRI(t —t'), (mO)M(t)) =2Nid(t-t), (nr®)m(t))=0,  (2.5)

with Nr — N, = 1. HereN, > 0 is a free parameter, which can be varied.
Expectation values are obtained by averaging over the bieg evolve according to

(O = [ dxdyRx y;)Ox-+iy). 2.6)
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Figure 1. (Left) Real and imaginary parts of the expectation valﬁl(ﬁ) and criteria for correctnes$, =
%(I:z”> versusnato = 1+i andA = 1 for real noisel; = 0). The horizontal lines indicate the exact value.
(Right) Criteria for correctness as a functionNyffor n = 4,6.

where the distributiofP(x,y;t) satisfies the FPE
P(x,y;t) = LTP(x,y;t), (2.7)
with the FP operator, = — Red,S(z) andKy = —Im d,S(z) are the drift terms):
LT =k (Nrdx — Ky) + 8y (Nidy — Ky) . (2.8)

In CL dynamics, convergence to the correct result is notantaed. A necessary condition is
that the so-calledriteria for correctnessare satisfied [3, 4]:

Co=(LO(2)) =0, (2.9)
in principle for a complete set of holomorphic observatfés). HereL is the Langevin operator
L =[0,-(0:5(2))] 0z (2.10)

We consider as observabl€s(z) = £z, with n even.

In Fig. 1 (Left) CL results are shown for the real and imagyngarts of the observabl%z’w
and for the criteria for correctne§y = %(I:z”>, forn=2,4,6,8. The figure shows the result for
real noiseN, = 0, and parameters = 1+i andA = 1: all expectation values agree with the exact
result, denoted with the horizontal lines, and the critfatacorrectness are all consistent with zero,
as it should be. Moreover, we have studied how the obsemwvaid the criteria for correctness
depend on the amount of complex noise. For siNalhe observables with = 2,4 appear to be
consistent with the exact result, while for lardgrthey start to deviate. Problems can be detected
by considering higher moments. For snidjithe observables (with > 6) and the criteria (with
n > 4) are only marginally consistent with the expected resullsle for largerN, they suffer from
large fluctuations, see Fig. 1 (Right), and can no longer hsilsly determined. According to the
analytical justification [3, 4], this implies that the resulrom CL cannot be trusted in the presence
of complex noise.
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3. Probability distributions

In this section we study the distributid®(x,y) in the complexified space. It can be obtained
directly collecting histograms of the distribution duritige CL evolution; this method can be easily
extended to multi-dimensional integrals and field theorfedifferent method to determir(x,y)
was followed in Ref. [5]: the idea is to expand the distribatin terms of a truncated set of basis
functions and solve the resulting matrix problem numelyca we denote the eigenvalues efL”
with k and the eigenfunctions with (x,y), what we have to do is to solve the following eigenvalue
problem: —LTP,(x,y) = kP«(X,y). The time-dependent distribution can then be written as:

P(xy:t) =Po(x )+ 5 e Pe(x.y), (3.1)
K#0
wherePR is the ground state, i.e. the one with eigenvatue 0. Note that, in order foRy(X,y) to
be the equilibrium distribution, it is necessary that fdrodher eigenvalues Re> 0.
Following Ref. [5], we expanéP(x,y) in a basis of Hermite functions, i.e.

Ny —1Ny—1

P(x,y) = kz IZ CiaHi (Vox) Hi (Vy) (3.2)
=0 1=0
wherew is a variational parameter appearing in the harmonic asgeilleigenfunctions, anNy
indicates the number of Hermite functions included in than¢ated basis. The coefficientg
have to be determined; this is explained in detail in Ref. [6]

We start with the case of complex noidd,= 1. The parameters in the action are taken as
o =1-+iandA =1, and we consider a basis with 30Ny < 150 Hermite functions and different
values ofw. In the limit of largeNy the results are expected to be independent of the value f
practice however, we find that for finitdy the parametew plays the role of a tuning parameter: in
particular, wherw is too small, there are eigenvalues with a negative real Jdéetfind that there is
always arw interval for which: i) there is an eigenvalue consistentw@ ii) the other eigenvalues
are in the right half-plane; iii) the reconstructed groutatesdistribution is stable under variation
of Ny andw. The smallest 15 eigenvalues are shown in Fig. 2 (Left):Hewd values shown here,
all eigenvalues are in the right half-plane and the spectiomind the origin is to a good extent
independent ofv. The reconstructed distributid?(x,y), using Eg. (3.2), is shown in Fig. 2 (Right).
We find a smooth distribution with a double peak structureritn 3 (Left) we present the partially
integrated distribution®,(y) = /%, dxP(x,y) on a logarithmic scale. Besides presenting results
for variousw values, we also show the histogram obtained during a CL sitionl. We observe
an acceptable agreement between the CL results and thssadfithe FPE forw ~ 1.5,2, down
to a relative size of 10°, after which the FP solution can no longer cope. We interiiistas a
manifestation of the truncation. Whea is taken too large, the disagreement occurs for smaller
values ofy. Moreover, we have verified that both partially integratéstributionsP,(y) andPRy(y)
are characterised by a power decay with power 5. In the cassabhoise N, = 0, we note that
in all cases there is an eigenvalue at (or close to) the grigihin general convergence is much
harder to establish from a study of the eigenvalues alonewégence oR, as w is increased
is demonstrated in Fig. 3 (Right) and we observe that a laagigevof w is required,w ~ 50. It
is of course expected that the chosen valuevaventually becomes irrelevant, but for finlkg
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Figure 2: (Left) Eigenvalues of the FP operatet.” for complex noise, witt\; = 1, magnified around the
smallest eigenvalues, for various valueswfato = 1+i, A =1, andNy = 150. (Right) DistributiorP(x,y)
in thexy-plane for complex noise, witN; = 1 andw = 1.5.
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Figure 3: Partially integrated distributiorn,(y) for different values otv with complex noisel; = 1 (left
plot) and real noisay, = 0 (right plot). In both cases the noisy (black) data was olethby a CL simulation.

keepingw as a tuning parameter is essential. The distribution is wetylocalised and appears to
drop to 0 aroung = 0.28. The distributiorP(x), in contrast to the case of complex noise, is now
characterised by an exponential rather than a power decay.

We conclude that for this choice of parameters< 1+ i andA = 1) the decay in the case of
real noise is manifestly different compared to complex &ois the latter we found a power decay,
resulting in ill-defined moment&") whenn > 4, while here we find exponential decay in the
direction and, as we will see below, in thelirection support only inside a strip. As a result there
is no problem in computing higher moments, since they areallldefined.

4. Interpretation

The classical flow diagram is shown in Fig. 4 (Left), for=1+i andA = 1. We show
the direction of the classical force by an arrow pointinghie tlirection(Ky(x,y),Ky(x,y)). The
arrows are normalised to have the same length. There aefikegl points, wher&, = Ky = 0:
an attractive point at the origin and two repulsive fixed pminThe flow is directed towards the
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Figure4: (Left) Classical flow in thexy-plane, foroc = 1+i andA = 1. The attractive/repulsive fixed points
are indicated with the openffilled circles. The full lineslitate whereky(x,y) = 0. The horizontal dashed
lines indicate the strip in which the CL process takes placéné case of real noise. (Right) Distribution
Ry(y) for different values oB, with N, = 0, ato = 1+ iB andA = 1, obtained with CL; the vertical line

indicates the boundary of the strip Br= 1.7. For largeB values, there is no longer a boundary.

origin, provided thaty| is not too large. This can be made more precise by studyingesyex,y)
changes sign: this is indicated in the classical flow diagwath full (blue) lines. We now realise
that along the horizontal dashed lines, which are deteminiyethe extrema of the centre curve
whereKy = 0 (y = +0.3029 in this case), the flow is always pointing inwards, i@vards the
real axis. In absence of a noise component in the verticattiin, this creates a barrier for the
Langevin evolution beyond which it cannot drift. We conduitherefore that in the case of real
noise the process takes place in the strip determined®$029< y < 0.3029. This is consistent
with the conclusions drawn above from the histograms and-f solution of the distribution
P(x,y). In the presence of complex noise, this conclusion no lohgéts and the entirgy-plane
can be explored.

As shown in Ref. [6] it is possible to make the argument basedlassical flow presented
above rigorous and show directly from the FPE that the daruilin distributionP(x,y) is strictly
zero in strips in they-plane. To summarise, for real noise, we find the following:

1. when 3? > B?, P(x,y) = 0 fory? > £ <l— \/1—3B—A2¥>i

2. when 32 < B?, there are no restrictions d¥(x,y).

Interestingly, the derivation in Ref. [6] demonstrates thhen 3\? < B, i.e. in absence of strips,
one may therefore expect a breakdown of CL with real noiseijai as with complex noise. This
is indeed what happens: as shown in Fig. 4 (Right) where ttelalition R,(y) is plotted asB is
increased. The delocalisation has a detrimental effechemdsults of the CL process. Studying
the moments and the criteria for correctness in this casebserve that increasirgihas a similar
effect as increasing\;: moreover a power law takes place again with power 5. In &fdin
Ref. [6], we have shown that it is possible to understand ttieetisal power decay directly from
the FPE: as a consequence, for lapgeand|y|, the distribution decays as a power, according to
P(x,y) ~ (x> 4+y?)~3. We conclude that in absence of strips a universal power &aylis present,
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which results in a breakdown of the formal justification [3,athd wrong or wildly fluctuating
results in practice.

5. Conclusion

In order to justify the results obtained with complex Lanigesdtynamics, it is necessary that
the probability distribution is sufficiently localised ihe complexified configuration space. Here
we have studied properties of this distribution via a numifemethods, in the case of a simple
model. In this case the FPE can be solved explicitly, via graegion in a truncated set of basis
functions. However, it is still a nontrivial problem and paps the best way to find the distribution
is by brute force, i.e. during the CL simulation. We have desti@ated that the essential insight can
already be obtained from a combination of histograms ofigdbrintegrated distributions and the
criteria for correctness, which gives a consistent picbfrthe dynamics. These tools are readily
available in field theory.

Recently, a new approach, based on deforming the integratiotour of the path integral into
the complex plane and performing Monte Carlo simulationshenso-called Lefschetz thimbles,
has been introduced [10, 11]. A comparison between CL anddfschetz thimble for the model
considered here, can be found in Ref. [12].

Finally, we remark that our conclusions are also immedjagplicable to nonabelian SN}
gauge theories [13], for which gauge cooling [2, 14] progidemeans to control the distribution in
SL(N, C), a possibility not present in simpler models.
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