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1. Introduction

Many important physical systems are characterized by complex actions, when formulated in
terms of a path integral. But, if the action S is not real, then e−S is not positive semi-definite and
it cannot be interpreted as a probability distribution. In these cases, Monte Carlo calculations are
not applicable directly. This is the so called sign problem. Many techniques have been proposed
to overcome this problem, with important partial successes, but the sign problem is still unsolved
for a variety of important physical systems and parameter values. In this context, any new idea that
could improve our chances to simulate any of these models on larger lattices than are feasible today
would be extremely valuable.

Recently, a new approach to control the sign problem was proposed in [1] and further devel-
oped in [2, 3, 4]. The approach consists in reformulating the quantum field theory (QFT) on a
Lefschetz thimble [5, 1]. The Lefschetz thimble, associated with a saddle point φ , is defined as the
hypersurface formed by the union of all paths of steepest descent (SD) of the complex action ending
in that saddle point φ at infinity. Both the Lefschetz thimble and the saddle point are constructed
in an enlarged space obtained by complexifying each field component.

2. QFT on a Letschetz thimble

In this section we briefly review the formulation of a quantum field on a Lefschetz thimble.
Consider a QFT on a lattice (or any other system with a finite number of continuous degrees of
freedom) defined by the action S(φ), where φ is a vector field whose number of components, n, is
equal to the number of degrees of freedom in the system. Suppose that the initial field theory is
defined for real fields, i.e, the expectation value of any observable O is given by,

〈O〉=
∫
D dφO(φ)e−S(φ)∫

D dφe−S(φ)
(2.1)

where D is the appropriate integration cycle for S in the real domain Rn. Now, consider S in terms
of the complexified fields, i.e, the field components φi are now allowed to be complex. Suppose,
S(φ) is holomorphic in this complexified space and its critical points φ σ given by

∂S
∂φ σ

= 0 (2.2)

are non-degenerate,

det
[

∂ 2S
∂φ σ ∂φ σ

]
6= 0. (2.3)

Then, under suitable conditions on S and O (typically fulfilled in physical systems) and for a
generic choice of parameters, we have that [5, 15, 16]∫

D
dφO(φ)e−S(φ) = ∑

σ

mσ

∫
Jσ

dφO(φ)e−S(φ) , (2.4)

for some mσ ∈ Z. That is, an integral over the real domain D is equivalent to sum of integrals over
the Lefschetz thimbles Jσ . This result can be seen as a generalization of contour deformation in
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one dimension. The Lefschetz thimbles Jσ associated with the critical points are many dimen-
sional generalizations of the paths of steepest descent. The thimble Jσ is defined as the union of
all paths governed by,

dφ

dτ
=− ∂S

∂φ
(2.5)

and which end at the critical point φ σ for τ → ∞. They are hypersurfaces of real dimension n
embedded in the complex manifold Cn. Here, and later, the overhead bar represents complex
conjugation In this paper we will assume that S is a Morse function, i.e., it has only non degenerate
critical points1.

On a Lefschetz thimble Jσ , the imaginary part of the action ℑS(φ) remains constant. The
measure term does introduce a new residual phase, due to the curvature of the thimble, but it is
expected to be a smooth function of the fields (see later).

Eq. (2.4) represents an exact reformulation of the original path integral, but, for a QFT, re-
producing the original integral exactly as in Eq. (2.4) is both impractical and unnecessary. In
fact, for a large class of QFTs one can show that the regularization on a (suitably chosen) single
thimble defines a QFT with the same degrees of freedom, the same symmetries (and symmetry-
representations), the same perturbative expansion and the same naive continuum limit as the tradi-
tional formulation2. On the basis of universality, these are the properties that justify a legitimate
regularization of that QFT, and the formulation on a single thimble is expected to coincide with
the traditional formulation, after suitable renormalization and in the continuum limit3. (The same
argument can be applied also to statistical models, at least in the vicinity of critical points.)

This leads to the formulation on a single thimble J0 as:

〈O(φ)〉=
∫
J0

dφO(φ)e−S(φ)∫
J0

dφ(φ)e−S(φ)
, (2.6)

Note that universality is not a theorem (beyond perturbation theory), but it is nevertheless a
property that one needs to assume anyway when studying any QFT on the lattice. So, this ap-
proach does not require new assumptions. It might certainly be that our present understanding of
universality is incomplete, and the properties listed above do not define a QFT, not even in the
continuum limit. But the thimble approach offers a well defined setup to investigate also this very
fundamental question, by comparing the results obtained on different thimbles (although reproduc-
ing precisely that combination of thimbles that corresponds exactly to the traditional formulation
seems not feasible).

Ref. [1] put forward another argument to justify the formulation on a single thimble (see also
[5]). In fact, it is often possible to identify a single stationary point such that the contribution of the
thimble attached to it is dominant, in the sense that the contribution of the other thimbles is either

1Degenerate minima, as they typically occur in the presence of symmetries, can be either lifted or treated as dis-
cussed in [1].

2In [1] this was shown explicitely only for QCD and for a self-interacting complex scalar field, but the arguments
are much more general.

3It would be also desirable to understand the role of reflection positivity in this setup. This is not easy, because even
in the ordinary formulation naive reflection positivity does not hold, and it is not clear how it should be reformulated.
Hopefully the analysis started in [6, 7] will shed some light on this issue.
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zero or exponentially suppressed, in presence of a large number of degrees of freedom. This may
happen either because the system has a single global minimum, which is also a stationary point
of the complexified action, or because there are degenerate global minima, that are however con-
nected by symmetries, or because there are degenerate global minima with vanishing probability
of tunneling. (When the global minimum is not a stationary point of the complexified action, it
is always easy to locate the stationary point whose thimble contains the global minimum. This is
typically the dominant one.)

Note that this latter argument is not conclusive: it is possible, e.g., that a large number of
stationary points may still accumulate near the global minimum giving a finite contribution. But,
if universality is correct, these other contributions should either be equivalent, or they should rep-
resent lattice artifacts, that are effectively removed by the renormalization procedure.

There is certainly a deep connection between the Lefschetz thimble and the complex Langevin
[8] approaches. At the very least, because both share the same stationary points, although the
relevant phase spaces are very different. The advantage of our approach is that a Monte Carlo on a
thimble provably simulates a well defined functional integral, which, in turns, is related to the usual
formulation on the basis of standard assumptions. We refer to [9, 10, 11, 12, 13, 14] for further
insight in this topic.

Different numerical approach can be envisaged to perform the integration on the Lefschetz
thimble. In the following we present the results obtained testing two of them: for the U(1) one-link
model we apply a Metropolis algorithm while for the relativistic Bose gas we use the Langevin
dynamics. Details on the implementation of the two methods are presented in [2, 3]. (See [4] for
another possible algorithm.)

3. One-plaquette model with U(1) symmetry

As a first simple application of the method we now discuss a system with one degree of free-
dom, viz. the one-plaquette model with U(1) symmetry. The action is given in terms of the gauge
link U = eiφ as

S =−i
β

2
(
U +U−1)=−iβ cosφ . (3.1)

where φ in this case is a one component field. For real β the action is complex, similar to real time
gauge theories.

For this simple model, all the integrals can be evaluated analytically, which offers the chance
to compare every detail of our numerical results to exact results. In particular the plaquette average
of the phase eiφ is given by,

〈eiφ 〉= i
J1(β )

J0(β )
(3.2)

with Jn(β ) being Bessel functions of the first kind. This analytic result offers the chance of a clear
test of our algorithm.

Obtaining this result using stochastic methods is quite non-trivial. For example the complex
Langevin method without ad-hoc optimizations gives the wrong result for this model [17].

In order to apply our method, we treat the field φ as complex. The action S has two critical
points at φ = 0 and π . By explicitly constructing the Hessian, it is easy to show that both the
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Figure 1: Left: sampled field configurations at β = 1 for the thimble attached to φ = 0. Right: Expectation
value of eiφ as a function of β .

critical points are non-degenerate. In this simple model we can also compute the intersection
numbers (mσ ), which turn out to be equal to 1 for both thimbles. The field configurations on
the two thimbles are related by the discrete symmetry transformation φ → π−φ , and expectation
values of observables can be written in terms of integrals over one thimble only.

For this model, one can explicitly derive the expression for the thimbles attached to the two
saddle points. In the left panel of Fig. 1 we show that the fields obtained using the numerical
method described above reproduce well the exact thimble.

We see systematic improvement in our results on increasing Nτ = ε−1, which represent the
discretization parameter in our Metropolis algorithm (the continuum limit is given by ε → 0. With
increasing Nτ the sampled field configurations uniformly converge on the true thimble. In contrast,
the flat Gaussian thimble (Nτ = 1) approximates the thimble quite well near the saddle point, but it
noticibly different further away from the saddle point.

In the right panel of Fig. 1 we show the results for the expectation value of the observable eiφ

for different β . Again, the results from our method systematically approach the exact analytical
result with increasing Nτ . For Nτ = 200, the results from our method are identical (within statistical
errors) to the analytical results for the range of β considered. In contrast, we notice that there is a
large difference between the analytical result and those from Monte Carlo if the field configurations
are sampled from the flat Gaussian thimble.

Finally, we discuss the residual phase in the context of the U(1) one-plaquette model. The
question of the residual phase is an important one. We expect it to produce a milder sign problem
(if at all), than the original sign problem. Nevertheless, it should be included in any quantitative
estimate. In our formulation the full (complex) measure of integration is given by det

[
Jφ

η

]
e−S. The

full integrals on the Lefschetz thimble are always real. This means that sin
(

arg
{

det
[
Jφ

η

]
e−S
})

does not contribute to the integral. The statement that the sign problem in our method is mild (or
absent) means that cos

(
arg
{

det
[
Jφ

η

]
e−S
})

(residual phase) will vary very little (or not at all), in

the region where
∣∣∣det

[
Jφ

η

]
e−S
∣∣∣ (probability measure) is significant.

For the U(1) one-plaquette model, the Jacobian of the transformation on each thimble is a
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Figure 2: The residual phase as a function of the probability measure at β = 1.

single number and is simply given by,

Jφ

η =
−iβ sinφ

η
. (3.3)

In Fig. 2 we show the residual phase vs the positive probability measure for this model. We see
that the residual phase changes by very little for variations of the probability measure spanning
many orders of magnitude. Moreover, the fluctuations of the residual phase grow milder as the true
thimble is approached starting from the Gaussian thimble. Most importantly, the residual phase
keeps the same sign throughout the full domain of integration, i.e., there is no sign problem for our
method for this particular model.

4. Relativistic Bose gas at finite chemical potential

The model is defined by the following continuum action:

S =
∫

d4x[|∂φ |2 +(m2−µ
2)|φ |2 +µ j0 +λ |φ |4], (4.1)

where φ(x) is a complex scalar field, jν := φ ∗∂νφ − φ∂νφ ∗ and µ is the chemical potential. In
this model (as in QCD) the density 〈n〉 = 1

V ∂ lnZ/∂ µ is expected to be zero up to a critical point.
But, this phase transition is hidden in the standard Monte Carlo method because of the strong sign
problem which appears as soon as µ 6= 0.

To formulate and simulate the relativistic Bose gas on a Lefschetz thimble [1], we need to
discretize the system defined by Eq. (4.1) and extend the action S holomorphically. This is done by
complexifying both the real and imaginary part of the original complex fields φx =

1√
2
(φ1,x+ iφ2,x),

as φa,x = φ
(R)
a,x + iφ (I)

a,x , a = 1,2, which leads to the action in d dimensions [18]:

S[{φa,x}] = ∑
x

[(
d +

m2

2

)
∑
a

φ
2
a,x +

λ

4
(∑

a
φ

2
a,x)

2 −∑
a

d−1

∑
ν=1

φa,xφa,x+ν̂ +∑
a,b

isinh µ εabφa,xφb,x+0̂

−cosh µ δa,bφa,xφb,x+0̂

]
, (4.2)
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(ε is the 2 dimensional anti-symmetric Levi-Civita symbol). The observables are defined as:

〈O〉0 =
1
Z0

∫
J0

∏
a,x

dφa,x e−S[φ ]O[φ ], Z0 =
∫

J0
∏
a,x

dφa,x e−S[φ ],

where the integration domain J0 is the Lefschetz thimble [16, 5] attached to φglob. The configu-
ration φglob is the global minimum of the real part of the action SR = ℜ{S}, when restricted to the
original domain R2V . More precisely, J0 is the manifold of real dimension N = 2V , defined as
union of all the curves of SD for SR, i.e., the curves that are solutions of Eq. 2.5 and that end in
φglob for τ → ∞.

In presence of spontaneous symmetry breaking (SSB), the global minimum φglob is degenerate.
But, the whole procedure can be defined by introducing an explicit term of symmetry breaking:
h∑x,a φx,a, where h is a real constant, that selects a specific minimum [19] (that can be computed
also analytically). Since h is real, the global minimum φglob of SR is also a stationary point of the
imaginary part of the action SI , and hence the thimble is well defined. Physical results are obtained
by extrapolating to h→ 0.

In this case we use the Langevin dynamics algorithm in order to move on the thimble, and in
particular we restrict the simulation to the case of the flat Gaussian manifold G0 which in this case
is a good approximation of the exact thimble (see [1, 19] for details) The results obtained in this
way agree perfectly (within the rather small errors) with the results obtained with the algorithm of
[20] and [21]4. In particular, they show the correct scaling with the volume.

We report the results of simulations for the relativistic Bose gas in 3+1 dimensions (d = 4).
The mass and coupling were fixed at m = 1 = λ , and µ was varied from 0 to 1.3. In Fig. 4 we
plot our results for the density 〈n〉 and 〈|φ |2〉 in the most interesting range between µ = 0.9 and
µ = 1.22. In these figures, we see a clear signal of the Silver Blaze phenomenon around µ ∼ 1.1. In
all the simulations shown here we used ∆t = 10−4, but we performed also some tests with ∆t = 10−3

and ∆t = 10−5 and we found no significant difference. The errorbars on each point are computed
from the standard deviation of 10 to 20 independent histories, in order to take the autocorrelation
effects into account. We used the sources h = 5×10−3 and h = 10−3 to extract the limit h→ 0.

In Fig. 4 we plot the average phase for the same simulations reported above. The phase is
used to reweight the observables. However, such reweighting brings corrections to the observables
that are unnoticeable, within the statistical errors. As expected, the sign problem in G0 gradually
increases on larger volumes and moving closer to the thimble will be eventually necessary.

Recently, a simulation on the exact thimble was carried out which verified our results and also
showed that there is no sign problem coming from the residual phase in this case [4].

5. Conclusions

We have reported on the status of the Lefschetz thimble approach to the sign problem of
QFTs. In particular, we have reviewed the justification of the approach, and we have summarized
its application to two different simple models, in which we have employed two different algorithms.

4We thank Gert Aarts, Christof Gattringer and Thomas Kloiber for sharing their partially unpublished results with
us.
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Figure 3: Average density 〈n〉 (left) and 〈|φ |2〉 (right) in the critical region for the lattices V = 44,64,84.
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Figure 4: The data on the top-right show the average phase obtained with the Aurora algorithm on lattices
44, 64 and 84. It is interesting that the average phase is large precisely in the most interesting region just
above µ = 1. The dashed lines on the bottom-left display, for comparison, the average phase obtained with
a naive phase-quenched Monte Carlo algorithm on lattices 44 and 64. Even on a 44 lattice, the sign problem
in the phase-quenched algorithm, completely hides the interesting region.
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The results are very encouraging and much work is currently ongoing to design better algorithms
and apply these ideas to more QFTs.
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