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1. Introduction

It is one of the main goals of lattice QCD at finite temperature and density to map the phase
diagram and the order of the transitions as a function of the quark chemical potential µ and the tem-
perature T . However, due to the sign problem of determinant-based Hybrid Monte Carlo (HMC),
little progress has been made towards this goal. All the methods at hand are limited to small µ/T
[1]. Here we propose to study the phase diagram from a strong coupling perspective, where sim-
ulations are feasible also at finite chemical potential. The strategy in strong coupling lattice QCD
is to perform the link integrals analytically first, and then to integrate out the Grassmann variables,
hence no fermion determinant arises. The sign problem poses no problem as it is much milder
than with HMC. We adopt the staggered fermion discretization, where a reformulation in “dual
variables” can be obtained [2]. The full QCD partition function is given by

ZQCD =
∫

dχdχ̄dUeSG+SF, SG=
β

2Nc
∑
P

tr[UP+U†
P]

SF = amq ∑
x

χ̄xχx +
1
2 ∑

x,ν
ην(x)γδν0

[
χ̄xeaτ µδν0Uν(x)χx+ν̂ − χ̄x+ν̂e−aτ µδν0U†

ν (x)χx

]
(1.1)

with mq the quark mass and µ = 1
3 µB the quark chemical potential. The anisotropy γ in the Dirac

couplings is introduced to vary the temperature continuously. At strong coupling, the ratio of spatial
and temporal lattice spacings is a

aτ
' γ2 [3]. The action in the strong coupling limit is simply given

by the fermionic action SF , as the lattice gauge coupling β = 2Nc/g2 vanishes when g→ ∞. Since
the link integration factorizes in the absence of the gauge action, the gauge links Uν(x) can be
integrated out analytically [4]. After performing the Grassmann integration, the final partition
function, introduced in [2], is obtained by an analytic rewriting in terms of hadronic degrees of
freedom (mesons and baryons):

Z = ∑
{k,n,`}

∏
x

wx ∏
b

wb ∏
`

w` with constraint nx + ∑
ν̂=±0̂,...±d̂

(
kν̂(x)+

Nc

2
|`ν̂(x)|

)
= Nc,

wx =
Nc!
nx!

(2amq)
nx , wb =

(Nc− kb)!
Nc!kb!

γ
2δν0 , w` = ∏

`

(
∏
b∈`

Nc!

)−1

σ(`)eNcNτ r`aτ µ
γ

NcN0 (1.2)

for gauge group SU(Nc). The mesons are represented by monomers nx ∈ {0, . . .Nc} on sites x
and dimers kb ∈ {0, . . .Nc} on bonds b = (x,ν), whereas the baryons are represented by oriented
self-avoiding loops `. The weight w(`) of a baryonic loop ` and in particular its sign σ(`) =

±1 depend on the loop geometry. The admissibility constraint on configurations {k,n, `} derives
from Grassmann integration. One consequence is that mesonic degrees of freedom (monomers
and dimers) can not occupy baryonic sites. This system has been studied both via mean field [5]
and Monte Carlo methods [6, 7, 3]. In recent years, the Monte Carlo approach has undergone
a revival due to the applicability of the worm algorithm. The idea is to violate the Grassmann
constraint locally in order to sample the monomer two-point function G(x,y). These techniques
have been applied to obtain all lattice data presented in this paper. In Fig. 1 (left), we show the
(µ,T ) phase diagram in the strong coupling limit and for mq = 0, where 〈ψ̄ψ〉 is the order parameter
for spontaneous chiral symmetry breaking. It is qualitatively similar to the expected phase diagram
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Figure 1: Left: β = 0 phase diagram with identifications: aT = γ2

Nτ
, aµ = γ2aτ µ , for Nτ = 2,4,6 and ∞. The

Nτ -dependence is mostly caused by deviations from a/aτ = γ2. Note that the re-entrance at low temperatures
vanishes in continuous time (Nτ → ∞). Right: One of various possible scenarios for the extension of the
chiral transition to finite β . It is expected that the chiral transition and the nuclear transition will split. The
first and second order transition regions are separated by tricritical lines.

of QCD in the chiral limit: the transition is of second order at aµ = 0, up to the tricritical point
at (aµT ,aTT ), where it turns first order. At finite quark mass, the second order line turns into a
crossover, the tricritical point into a second order critical endpoint. At low temperatures, in contrast
to QCD, the chiral transition coincides with the nuclear transition. This is because above the critical
chemical potential a baryonic crystal forms, with one static baryon per spatial site, which restores
chiral symmetry. This saturation effect is a lattice artifact.

Since strong coupling lattice QCD can be thought of as a one-parameter deformation of
(N f = 4) continuum QCD, an important question is how both phase diagrams are connected. Due
to the sign problem, only the plane at µ = 0 and the plane at β = 0 are known so far. The QCD
phase diagram in the (µ,T ) plane in the continuum limit is largely unknown. If the mq = 0 tricriti-
cal point persists in the continuum limit, this is strong evidence for the existence of a chiral critical
endpoint in full QCD at physical quark mass. In order to go beyond the strong coupling limit, we
derive a partition function, exact at O (β ), from which we compute the shift with β of the chiral
transition temperature. There are two main questions we want to address: How does the tricritical
point move with β? And do two distinct transitions (nuclear and chiral) arise at low temperature?
One of various possible scenarios is sketched Fig. 1 (right).

2. Corrections to the Strong Coupling Limit

To go beyond the strong coupling (SC) limit, a systematic expansion of the QCD partition
function in β is needed. Here we derive this expansion valid to the leading order O (β ). The
partition function including the gauge part can be written in terms of a fermionic path integral:

ZQCD =
∫

dχdχ̄dUeSG+SF =
∫

dχdχ̄ZF
〈
eSG
〉

ZF
(2.1)

where ZF(χ, χ̄) =
∫

dUeSF is the fermionic partition function, which is related to the strong cou-
pling (β = 0) partition function via ZSC =

∫
dχdχ̄ZF . The weight of the gauge action can then be
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O (β)
≡

Gauge Flux

Quark Flux
confined in Baryon
Quark Flux
confined in Meson

Figure 2: Illustration of O (β )-corrections to the strong coupling ensemble: insertion of two parallel dimers
produces one of the 19 plaquette diagrams. The dimer and flux variables adjacent to the plaquette are
composed of quark flux and gauge flux: blue lines represent mesonic content, red lines represent baryonic
content. The baryon becomes an extended object and interacts with mesons by quark and gluon exchange.

expressed as an expectation value which we linearize to obtain the O (β ) contribution:〈
eSG
〉

ZF
' 1+ 〈SG〉ZF

= 1+
β

2Nc
∑
P

〈
tr[UP +U†

P]
〉

ZF
. (2.2)

To evaluate the expectation value of the elementary plaquette 〈tr[UP]〉ZF
in the strong coupling

ensemble ZF , we need to compute the link integrals with an additional gauge link coming from the
plaquette. Before Grassmann integration, the plaquette is given by 〈tr[UP]〉ZF

= Ji jJ jkJklJli with the
link integrals at the edges of an elementary plaquette [8]:

Ji j =
Nc

∑
k=1

(Nc− k)!
Nc!(k−1)!

(MχMϕ)
k−1

χ̄ jϕi−
1

Nc!(Nc−1)!
εii1i2ε j j1 j2 ϕ̄i1 ϕ̄i2 χ j1 χ j2−

1
Nc

B̄ϕBχ χ̄ jϕi (2.3)

with M and B representing the mesons and baryons. From these link integrals, we can compute
the weight for inserting a plaquette into the strong coupling configuration. At the corners of the
plaquette, the Grassmann variables ϕ,χ are bound into baryons and mesons to fulfill a modified
constraint: together with plaquette links, the degrees of freedom add up to Nc+1. For Nc = 3, there
are 19 diagrams contributing to the plaquette P, one of them given in Fig. 2. We can summarize
the modifications of the site weights, ν , and of the link weights, ρ , around an excited plaquette as:

νM = (Nc−1)!, νB = Nc!, ρMk = k, ρB1 =
1

(Nc−1)!
, ρB2 = (Nc−1)!, (2.4)

for a site connected to a mesonic or a baryonic "external leg", and for an unoriented [mesonic] or
oriented [baryonic] link, respectively. B1 and B2 represent color singlets qqg and Bq̄g. We can
then introduce a new set of variables, the plaquette occupation numbers qP ∈ {0,1}1 and include a
Metropolis update allowing to sample the partition function

Z(β ) = ∑
{k,n,q,`}

∏
x

ŵx ∏
b

ŵb ∏
`

ŵ`∏
P

ŵP,

ŵx = wxνi
qx , ŵb = wbρMk

qb ŵ` = w` ∏
B j∈`

ρB j
qB , ŵP =

(
β

2Nc

)qP

(2.5)

at finite β . Qualitatively new aspects of the O (β ) contributions are (i) that mesons and baryons
are now allowed to interact by quark and gluon exchange and (ii) that hadrons become extended
objects, in contrast to their pointlike nature in the strong coupling limit. Due to the plaquettes, there
is no strict decomposition of the lattice into mesonic and baryonic sites. The O (β ) corrections
allow to measure the β = 0 vev of gauge observables (average plaquette, Polyakov loop), and the
O (β ) vev of fermionic observables (derivative of the chiral susceptibility, baryon density).

1An excited plaquette qP = 1 enforces site numbers qx = 1 at its 4 corners, and along its 4 edges bond numbers
qb = 1 for unoriented bonds and qB = 1 for oriented link states B1,B2. Otherwise, qx = qb = qB = 0.
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Figure 3: Temperature dependence of gauge observables: both the Polyakov loop (left) and the plaquette
(right) show an L-dependence in the transition region, close to aTc = 1.402(1). Note that the temporal
plaquette shows a non-monotonic convergence to the high-temperature limit (shown in the upper left inset).

3. Gauge Observables

As a byproduct, the above method yields the plaquette expectation value at β = 0. And it can
be straightforwardly modified, replacing the plaquette by an arbitrary Wilson loop. In this manner,
we have obtained the Polyakov loop and plaquette (spatial and temporal) expectation values at
β = 0. Our results are shown in Fig. 3 for µ = 0. They agree with µ = 0 HMC. Note the appearance
of a cusp in both observables as the volumes increases at the second order chiral transition. This
behaviour was reported for U(3) gauge theory in [9]. It is not directly related to deconfinement, but
to the singularity of the free energy.2

4. Phase Diagram as a Function of β

For fermionic observables, such as the chiral susceptibility or the baryon density, we can
extract the leading order β -correction (the derivative with respect to β ). This allows us to determine
the O (β ) gauge corrections to the strong coupling phase diagram. In the following we consider the
chiral limit, where the chiral condensate is zero due to the finite system size, but the susceptibility
still signals the chiral transition. The worm algorithm samples the 2-point correlation function
in the 2-monomer sector; its integral is the susceptibility χ=

1
V ∑x1,x2 G(x1,x2) ≡

〈
(ψ̄ψ)2

〉
. The

leading order Taylor coefficient of χ , i.e. cχ = ∂ χ

∂β

∣∣∣
β=0

, obeys (with P =
〈

1
2Nc

tr[UP +U†
P]
〉

ZF
) 3

χ(β ) = χ0 + cχβ +O
(
β

2) , cχ = 3N3
s Nt
(〈
(ψ̄ψ)2P

〉
−
〈
(ψ̄ψ)2〉〈P〉) . (4.1)

2Including the chemical potential (see Fig. 5, left), the limits for large ρ = a(T 2 + µ2)1/2 for the (anti-)Polyakov
loop

〈
L±
〉

and the temporal plaquette 〈Pt〉 are

lim
ρ→∞

〈
L±
〉
=

1
Nc

exp(±Ncµ/T )+Nc

2cosh(Ncµ/T )+Nc +1
, lim

ρ→∞
〈Pt〉=

1
Nc

3

Nc(1+ 1
2γ2 )exp(Ncµ/T )+ Nc(Nc+1)

2

2cosh(Ncµ/T )+Nc +1

2

.

The γ-dependence of the plaquette is a finite Nτ effect and produces a non-monotonic behaviour, shown in Fig. 3, right.
3At finite temperature, since the spatial and temporal plaquette differ, there are two Taylor coefficients, cs, ct , with

cs,t =
∂

∂βs,t

〈
(ψ̄ψ)2〉. However, cs is largely suppressed with temperature, just like the spatial plaquette itself (see Fig. 3

right), and can be safely neglected.
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Figure 4: The transition temperature from critical scaling of the chiral susceptibility. Left: for β = 0,
aTc = 1.402(1). Right: for β = 0.03, the transition temperature shifts to aTc = 1.389(1).

We determine the transition temperature via critical scaling with 3d O(2) critical exponents γ , ν :
χL(T,β )/Lγ/ν = A+BtL1/ν , t = T−Tc(β=0)

Tc(β=0) . The chiral susceptibility data collapses on a universal
scaling function when rescaled in this way, which is almost linear in the scaling window with non-
universal coefficients: A' 1.001(5) and B'−0.892(5) for SU(3) at zero density. Our strategy is to
determine the shift in aTc induced by a small, finite value of β . For the data collapse to be preserved,
the Taylor coefficient cχ also has to obey critical scaling.4 The slope of the critical temperature is

s ≡ d
dβ

aTc(β )
∣∣∣
β=0

= −aTc
A
B c2. At µ = 0, where aTc = 1.402(1), we obtain s = −0.446(7). We

obtain a consistent result by reweighting to non-zero β (see Fig. 5 right). We can then compare
the resulting aTc(β )|µ=0 to the mean field result of Miura et al. [10], see inset of Fig. 5 right. The
drop in aTc is expected since the lattice spacing a(β ) shrinks as β is increased. Due to the mild
sign problem of the dimer representation, our method to determine the slope of aTc can be readily
extended to finite density, with Fig. 5 (right) showing the phase boundary for small β . We find
that the change with β weakens with µ and eventually vanishes at the tricritical point. We do not
find any shift in the first order phase boundary, as sketched in Fig. 1 right. This may change if we
include O

(
β 2
)

corrections, which we plan to do in the future.

5. Conclusion

We have presented a method to compute gauge corrections to the QCD phase diagram at strong
coupling. We make use of reweighting to obtain the leading order gauge corrections to the chiral
susceptibility. Via a finite size scaling analysis we are able to determine the derivative of the chiral
transition temperature d

dβ
aTc, at zero and non-zero density, resulting in the finite-β phase diagram

in Fig. 5 right. In the strong coupling limit, the ratio Tc(µ=0)
3µc(T=0) ≈

1.403
1.71 = 0.82 is much too large

compared to the continuum result (in the chiral limit) Tc
3µc
≈ 154MeV

0.93GeV = 0.165. Hence it is expected
that the critical temperature aTc(µ = 0) decreases more rapidly with β than aµc(T = 0).

4We find that cχ can be well fitted by a linear function in t: cχ

χ
' c1 + c2L1/ν + c3t, with c2 =−0.248(1) at µ = 0.
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Figure 5: Left: The (anti-)Polyakov loop and spatial/temporal plaquette as a function of a
√

µ2 +T 2, for
different values of µ/T . Right: corrections to the phase boundary when linearly extrapolating in β (for
Nτ = 4). Inset: Comparison of aTc(µ = 0) versus β for Nτ = 2,4,6 with those obtained by mean field
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