
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
4
1

Onset Transition to Cold Nuclear Matter from Lattice
QCD with Heavy Quarks to κ4

Jens Langelage∗

Institute for Theoretical Physics, ETH Zürich, CH-8093 Zürich, Switzerland
E-mail: ljens@phys.ethz.ch

Mathias Neuman†, Owe Philipsen
Institut für Theoretische Physik, Goethe-Universität Frankfurt,
60438 Frankfurt am Main, Germany
E-mail: neuman, philipsen@th.physik.uni-frankfurt.de

We present results of our ongoing studies of an effective three-dimensional theory of thermal
lattice QCD with heavy Wilson quarks. This is done by combined strong coupling and hopping
parameter expansions. The full quark determinant of four dimensional lattice QCD is expanded
in orders of the hopping parameter κ , the dimensional reduction is achieved by integrating over
the spatial links. We present the calculation of the effective theory through order κnum with
n+m = 4. This theory is then used to simulate heavy quarks near the cold and dense limit. For
nonzero chemical potential the theory suffers from a sign problem, wich is avoided by employ-
ing stochastical quantisation. Continuum extrapolated results for the onset of nuclear matter are
shown and the region of convergence of the effective theory is discussed.

31st International Symposium on Lattice Field Theory LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.
†Speaker

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:ljens@phys.ethz.ch
mailto:neuman, philipsen@th.physik.uni-frankfurt.de


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
4
1

Onset Transition to Cold Nuclear Matter Jens Langelage

1. Introduction

Thermal lattice QCD suffers from a severe sign problem when chemical potential is nonvan-
ishing. About a decade ago, several methods have been devised to circumvent this obstacle (see
e.g. [1] and references therein), but these are only valid for µ

T . 1. In order to go to higher chemical
potentials, methods are required which at least potentially may solve this problem. Among these
are Complex Langevin Dynamics (CLD) [2, 3], transformation of the degrees of freedom into so-
called dual variables [4, 5] and the formulation of the theory on a Lefschetz thimble [6]. But even if
these approaches finally succeed in solving the sign problem, it will remain very hard to study the
region of cold and dense matter. This is because, in order to avoid the limiting artefact of saturation
at finite lattice spacing, very fine lattices are required for high density, which implies in turn very
large temporal lattice extents near T = 0. This motivates yet another approach, where we use strong
coupling and hopping parameter expansions in order to simulate a 3d effective theory in a param-
eter regime where the sign problem is mild. See also [7, 8, 9, 10] for similar approaches, where
staggered fermions are being used. There the strong coupling series is much harder to compute,
but with the advantage that the chiral regime can be studied.

Here we show how to derive the 3-dimensional effective theory by integrating out the spatial
degrees of freedom from the original (3+ 1)d theory. This procedure has the additional benefit
that the effective action can be formulated in terms of complex numbers instead of group matrices.
This allows us to simulate the effective theory quite fast and efficiently. Nevertheless, our approach
also has some drawbacks, first and foremost that we do not know the effective action in the full
parameter regime. Our strategy is to expand the effective action around the static strong coupling
limit, i.e. β = κ = 0, in a combined strong coupling and hopping parameter expansion. In previous
works [11, 12] this has been shown to work rather well and even allowing for continuum extrap-
olations in the heavy quark regime. Here, our approach is slightly adapted: In order to be able to
describe physics near T = 0 and large chemical potentials, we expand in κ , but keep in each order
the complete dependence on chemical potential.

2. The effective action

We start on a (3+1)-dimensional lattice with Wilsons gauge and fermion actions, which after
Grassmann integration may be written as

Z =
∫
[dUµ ]det [Q]exp [Sg] , Sg =

β

2Nc
∑
p

[
TrUp +TrU†

p
]
, (2.1)

where we defined the quark hopping matrix as

Qab
αβ ,xy = δ

ab
δαβ δxy−κ

3

∑
ν=0

[
eaµδν0(1+ γν)αβUab

ν (x)δx,y−ν̂ + e−aµδν0(1− γν)αβUab
−ν(x)δx,y+ν̂

]
.

Note that we consider only N f = 1 quark flavours in these first exploratory studies. The effective
action is then defined by integrating out the spatial link variables

eSeff ≡
∫
[dUk]det [Q]exp [Sg] . (2.2)
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The crucial point of this approach is that the resulting effective theory does not depend on the single
temporal link variables, but only on their product along a temporal axis, i.e. the Polyakov loops

Li ≡ TrWi ≡
Nτ

∏
τ=1

U0 (~xi;τ) . (2.3)

Our goal is now to expand eq. (2.2) in a combined strong coupling and hopping parameter ex-
pansion. This introduces an infinite tower of effective interaction terms, which will be ordered
according to their leading powers in β ,κ . We will also make sure that we have the complete de-
pendence on chemical potential in each order of the hopping parameter expansion, starting with
the zeroth order, which is simply pure gauge theory.

2.1 Pure gauge theory

In case of pure gauge theory it is advantageous to perform a character expansion

exp
[

β

2Nc

(
TrU +TrU†

)]
= c0(β )

[
1+ ∑

r 6=0
drar(β )χr(U)

]
, (2.4)

where the factor c0(β ) can be neglected as it is independent of gauge links and cancels in expecta-
tion values. In earlier publications [11, 13, 14], we have shown how to compute the effective gauge
theory up to rather high orders in the fundamental character expansion coefficient u(β )≡ a f (β ). In
leading order we have a chain of Nτ fundamental plaquettes winding around the temporal direction
and closing via periodic boundary conditions. It reads

eS(1)eff = λ (u,Nτ) ∑
<i j>

(
LiL∗j +L∗i L j

)
, λ (u,Nτ) = uNτ

[
1+ . . .

]
, (2.5)

where higher order corrections of λ (u,Nτ) as well as a discussion of higher order interaction terms
can be found in [13]. In the leading order expression of eq. (2.5) we already see that λ (u,Nτ) is
suppressed for large Nτ , since u < 1, see also [11] for a further discussion of this aspect.

2.2 Static quark determinant

Let us now expand the quark determinant in a hopping expansion. In order to keep the com-
plete dependence on chemical potential, we split the quark matrix according to

Q = 1−T −S = 1−T+−T−−S+−S− , (2.6)

in positive and negative temporal and spatial parts. The static determinant is then given by neglect-
ing the spatial parts. We define and compute the static determinant to be

det[Qstat] = det[1−T ] = det[1−T+−T−]

= det
[
1−κeaµ(1+ γ0)U0δx,y−0̂−κe−aµ(1− γ0)U

†
0 δx,y+0̂

]
(2.7)

with propagation in the temporal direction only. Perfoming the space and spin determinant we get

det[Qstat] = ∏
~x

det
[
1+(2κeaµ)NτW~x

]2
det
[
1+(2κe−aµ)NτW †

~x

]2
. (2.8)
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A well-known relation valid for SU(3) then allows us to reformulate this in terms of traced Polyakov
loops

det[Qstat] = ∏
~x

[
1+ cL~x + c2L†

~x + c3
]2 [

1+ c̄L†
~x + c̄2L~x + c̄3

]2
, (2.9)

with c = c(µ) = (2κeaµ)Nτ = c̄(−µ) in the strong coupling limit.

2.3 Kinetic quark determinant

In order to compute a systematic hopping expansion, we define the kinetic quark determinant
as follows

det[Q] ≡ det[Qstat][Qkin] ,

det[Qkin] = [1− (1−T )−1(S++S−)]≡ det[1−P−M] = exp [Tr ln(1−P−M)] , (2.10)

which we then split into parts describing quarks moving in positive and negative spatial directions,
P = ∑k Pk and M = ∑k Mk. The reason for this is that the trace occurring in eq. (2.10) is also a trace
in coordinate space. This means that only closed loops contribute and hence we need the same
number of Ps and Ms in the expansion of the logarithm. Through O

(
κ4
)

we have

det[Qkin] = exp
[
−TrPM−TrPPMM− 1

2
TrPMPM

][
1+O(κ6)

]
=

[
1−TrPM−TrPPMM− 1

2
TrPMPM+

1
2
(TrPM)2

][
1+O(κ6)

]
. (2.11)

The next step is now to consider the different directions in P and M and to neglect the vanishing
contributions, i.e. those which have e.g. a Pk but no Mk

∑
kl

TrPkMl = ∑
k

TrPkMk , (2.12)

∑
klmn

TrPkPlMmMn = ∑
k

TrPkPkMkMk +∑
k 6=l

TrPkPlMkMl +∑
k 6=l

TrPkPlMlMk , (2.13)

1
2 ∑

klmn
TrPkMlPmMn =

1
2 ∑

k
TrPkMkPkMk +

1
2 ∑

k 6=l
TrPkMkPlMl +

1
2 ∑

k 6=l
TrPkMlPlMk , (2.14)

1
2 ∑

klmn
TrPkMlTrPmMn =

1
2 ∑

k,l
TrPkMkTrPlMl . (2.15)

Having these expressions, the final ingredient is to compute the static quark propagator (1−T )−1,
appearing in eq. (2.10).

2.4 Static quark propagator

Since (1+ γµ)(1− γµ) = 0, hops in forward and backward time direction do not mix and the
full static quark propagator is given by

(Qstat)
−1 = (Q+

stat)
−1 +(Q−stat)

−1−1 .
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In order to compute the positive static quark propagator, we use the series expansion

(Q+
stat)
−1 =

(
1−T+

)−1
=

∞

∑
n=0

(T+)n ,

where convergence is only guaranteed for z≡ 2κeaµ < 1. The inverse is given by

(Q+
stat)
−1
τ1τ2

= δτ1τ2 (1−qcW )+qzτ2−τ1W (τ1,τ2)
[
Θ(τ2− τ1)− zNτ Θ(τ1− τ2)

]
,

where

q≡ 1
2
(1+ γ0)(1+ cW )−1 ,

and W (τ1,τ2) is a temporal Wilson line from τ1 to τ2. If τ1 = τ2, i.e. the Wilson loop winds around
the lattice, we have the usual (untraced) Polyakov loop W (τ1,τ1) =W . Although we have derived
this expression with a geometric series, which converges only for c < 1, it can be shown that this
is indeed the inverse for all values of c, e.g. by evaluating that (Q+

stat)
−1(Q+

stat) = 1.
The contribution in negative time direction (Q−stat)

−1
τ1τ2

can then be obtained from (Q+
stat)
−1
τ1τ2

by
the following replacements

τ1↔ τ2 , W (τ1,τ2)↔W †(τ1,τ2) , µ ↔−µ ,

and reads

(Q−stat)
−1
τ1τ2

= δτ1τ2

(
1− q̄c̄W †)+ q̄z̄τ1−τ2W †(τ1,τ2)

[
Θ(τ1− τ2)− z̄Nτ Θ(τ2− τ1)

]
,

q̄ =
1
2
(1− γ0)

(
1+ c̄W †)−1

, z̄ = 2κe−aµ .

Finally we split the temporal quark propagator in spin space as well as in propagation in positive
and negative temporal direction according to

(Qstat)
−1 = A+ γ0B = A++ γ0B++A−− γ0B− , (2.16)

A+
xy =

1
2

[
1− cW

1+ cW

]
δxy +

1
2

zτy−τx
W (τx,τy)

1+ cW

[
Θ(τy− τx)− cΘ(τx− τy)

]
δxy ,

B+
xy = −1

2
cW

1+ cW
δxy +

1
2

zτy−τx
W (τx,τy)

1+ cW

[
Θ(τy− τx)− cΘ(τx− τy)

]
δxy ,

A−xy =
1
2

[
1−1

c̄W †

1+ c̄W †

]
δxy +

1
2

z̄τx−τy
W †(τx,τy)

1+ c̄W †

[
Θ(τx− τy)− c̄Θ(τy− τx)

]
δxy ,

B−xy = −1
2

c̄W †

1+ c̄W † δxy +
1
2

z̄τx−τy
W †(τx,τy)

1+ c̄W †

[
Θ(τx− τy)− c̄Θ(τy− τx)

]
δxy ,

Due to the length of these terms, we will formulate our results usually in A and B for brevity.

2.5 The leading correction terms

Now it is time to perform the group integrations. Let us for notational convenience define the
following quantities ∫

[dUk]det[Qkin]≡ 1+∑
n,m

∆
(n,m) , (2.17)

where n denotes the order in the hopping parameter κ and m specifies the mth term appearing in
eqs (2.12-2.15).

5
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2.5.1 TrPM:

From eq. (2.12) and after a few steps of algebra the correction of O(κ2) is given by

∆
(2,1) ≡

∫
[dUk]∑

i
TrPiMi = ∑

i

∫
[dUk]Tr

[
(Q+

stat)
−1S+i (Q

+
stat)
−1S−i

]
= −8κ2

Nc
∑
u,i

TrBu,uTrBu+ı̂,u+ı̂

= −2κ2Nτ

Nc
∑
~x,i

[(
Tr

cW~x

1+ cW~x
−Tr

c̄W †
~x

1+ c̄W †
~x

)(
Tr

cW~x+ı̂

1+ cW~x+ı̂
−Tr

c̄W †
~x+ı̂

1+ c̄W †
~x+ı̂

)]

where we have used the expressions eq. (2.16) for B and evaluated the trace over spin and coordinate
space. The group integrations have been computed via

∫
dUUi jU

†
kl =

1
3

δilδ jk . (2.18)

Note that this enforces the spatial link variables to be at the same temporal location and yields a
factor Nτ rather than N2

τ from the two temporal traces. From now on we will skip the last step,
where one has to insert the definitions of A and B and perform the temporal sums.

2.5.2 TrPPMM:

Here we have three contributions according to eq. (2.13), which after group integration and
tracing read

∆
(4,1) = −32κ4

N2
c

∑
u,v,i

TrBu,uTrAu+ı̂,v+ı̂Av+ı̂,u+ı̂TrBu+2ı̂,u+2ı̂ ,

∆
(4,2) = O(κ4u) ,

∆
(4,3) = −16κ4

N2
c

∑
u,v,i6= j

TrBu−ı̂,u−ı̂

[
TrAu,vAv,u +TrBu,vBv,u

]
TrBu+̂,u+̂ ,

where in case of ∆(4,2) one has to leave the strong coupling limit and include an additional gauge
plaquette due to otherwise vanishing group integration.
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2.5.3 TrPMPM:

The contributions in this term read following eq. (2.14)

∆
(4,4) = −16κ4

N2
c

∑
u6=v,i

[
TrBu,vBv,u

(
TrBu+ı̂,u+ı̂

)2
+
(

TrBu,u

)2
TrBu+ı̂,v+ı̂Bv+ı̂,u+ı̂

]
− 16κ4

(N2
c −1) ∑

u,i

{
TrBu,uBu,u

(
TrBu+ı̂,u+ı̂

)2
+
(

TrBu,u

)2
TrBu+ı̂,u+ı̂Bu+ı̂,u+ı̂

− 1
Nc

[
TrBu,uBu,uTrBu+ı̂,u+ı̂Bu+ı̂,u+ı̂ +

(
TrBu,u

)2(
TrBu+ı̂,u+ı̂

)2
]}

,

∆
(4,5) = −8κ4

N2
c

∑
u,v,i6= j

TrBu−ı̂,u−ı̂

[
TrAu,vAv,u +TrBu,vBv,u

]
TrBu+̂,u+̂) ,

∆
(4,6) = −8κ4

N2
c

∑
u,v,i6= j

TrBu−ı̂,u−ı̂

[
TrAu,vAv,u +TrBu,vBv,u

]
TrBu−̂,u−̂) ,

.

In the calculation of ∆(4,4) it may happen that there is a spatial link which is occupied by four
matrices and we need the group integral (see e.g. [15])

∫
dU Ui1 j1Ui2 j2U

†
k1l1U

†
k2l2 =

1
N2

c −1

[
δi1l1δi2l2δ j1k1δ j2k2 +δi1l2δi1l2δ j1k2δ j2k1

]
− 1

Nc(N2
c −1)

[
δi1l2δi2l1δ j1k1δ j2k2 +δi1l1δi2l2δ j1k2δ j2k1

]
. (2.19)

2.5.4 (TrPM)2:

Here we have to consider two different possibilities: The two nearest-neighbour contributions
may share 0, 1 or 2 sites, where the first two lead the same result. Their contribution is given by

∆
(4,7) =

32κ4

N2
c

∑
u,v,(u+ı̂6=v+̂)

TrBu,uTrBu+ı̂,u+ı̂TrBv,vTrBv+̂,v+̂ .

The other possibility is that (~u, i) = (~v, j), i.e. we have only two sites involved and get

∆
(4,8) =

32κ4

N2
c

∑
u6=v,i

[(
TrBu,u

)2(
TrBv+ı̂,v+ı̂

)2
+TrBu,vBv,uTrBu+ı̂,v+ı̂Bv+ı̂,u+ı̂

]

+
32κ4

N2
c −1 ∑

u,i

{(
TrBu,u(~x)

)2(
TrBu+ı̂,u+ı̂

)2
+TrBu,uBu,uTrBu+ı̂,u+ı̂Bu+ı̂,u+ı̂

− 1
Nc

[
TrBu,uBu,u

(
TrBu+ı̂,u+ı̂

)2
+
(

TrBu,u

)2
TrBu+ı̂,u+ı̂Bu+ı̂,u+ı̂

]}
.

7
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Figure 1: Finite gauge coupling corrections to the Polyakov line. After spatial link integration these graphs
give rise to terms ∼ TrW .

2.6 Resummations

In order to include as many terms as possible and improve convergence we perform a resum-
mation. The contributions of TrPM and parts of 1

2 TrPMTrPM can be written as an exponential:

exp
[
∆
(2,1)
]
= 1− 8κ2

Nc
∑
u,i

TrBu,uTrBu+ı̂,u+ı̂

+
32κ4

N2
c

∑
u,v,i, j

TrBu,uTrBu+ı̂,u+ı̂TrBv,vTrBv+̂,v+̂+ . . . (2.20)

Inspection of higher order terms indicates that this should always be possible. Therefore we may
write ∫

[dUk]det[Qkin] = e∑n,m ∆(n,m)
, (2.21)

where ∆(4,7) and the parts of ∆(4,8) ∼
(
∆(2,1)

)2 are to be excluded to avoid double counting.

2.7 Leading gauge corrections to the strong coupling limit

Leaving the strong coupling limit, i.e. β 6= 0, gauge plaquettes have to be included. This makes
the effective coupling constants depend on the gauge coupling: hi(κ)→ hi(κ,u). A somewhat
special role plays the single Polyakov line coupling c introduced in eq. (2.9), since it also enters in
the static propagator eq. (2.16). Hence we may further resum terms by replacing the static version c
with h1, which is defined to include gauge interactions. The leading gauge corrections are of order
Nτκ2u coming from attaching plaquettes to the Wilson line, cf. fig. 1

c→ h1 = c
[
1+6κ

2Nτu+O(κ2u5)
]
. (2.22)

This can also be exponentiated by summing over multiple attached plaquettes at different locations

h1 = cexp
[

6κ
2Nτ

u−uNτ

1−u

]
= exp

[
Nτ

(
aµ + ln2κ +6κ

2 u−uNτ

1−u

)]
, (2.23)

and we see that in this way the Polyakov line receives mass corrections due to interactions. Note
that this generates overcounting in higher orders, but in our opinion the resummation effects of this
procedure more than compensates for this additional care. Let us finally also give a correction for
the coefficient in ∆(2,1)

2κ2Nτ

Nc
→ 2κ2Nτ

Nc

[
1+2

u−uNτ

1−u
+ . . .

]
. (2.24)

8
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Figure 2: Comparison between Langevin and Monte Carlo data at κ = 0.01 and Nτ = 200 in the strong
coupling limit.
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Figure 3: Test of the convergence criterion for complex Langevin in the effective theory to order κ2 (left)
and κ4 (right) for κ2Nτ

Nc
= 0.01 and β = 5.7. L refers to the operator in (3.6)

With this the effective threedimensional theory we are going to simulate is finally given by

Zeff =
∫
[dW ]det[Qstat]exp

[
∆
(2,1)+∑

m
(κ,u)∆(4,m)

]
, (2.25)

where the sum over m is restricted in the same way as in eq. (2.21).

3. Simulation of the effective theory by complex Langevin

The effective theory specified in the last sections has a sign problem. With less degrees of
freedom and the theory being only three-dimensional, the sign problem is milder than in the original
theory such that Monte Carlo methods are feasible at finite temperatures and chemical potentials
µ/T <∼3 [11]. If, however, one is interested in cold dense matter in the zero temperature limit,
the sign problem becomes strong and Monte Carlo methods fail on large volumes. Fortunately, the
effective theory is amenable to simulations using complex Langevin algorithms (for an introductory
review, see [16]) and the onset transition to nuclear matter could be demonstrated explicitly for very
heavy quarks [12]. In this section we discuss the validity of this approach for the effective theory.

9
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Figure 4: Comparison between different orders in κ , using the standard action (left), the resummed action
(middle) and including gauge corrections (right).

We will only sketch the general method here, as there is an abundant literature on this subject
[16, 17, 18].

The basic idea is to introduce a fictitious Langevin time θ , in which a field theoretical system
with Gaussian noise η(x,θ) evolves according to the Langevin equation

∂φ(x,θ)
∂θ

=− δS
δφ(x,θ)

+η(x,θ) . (3.1)

In the case of a complex action, the field variables have to be complexified too, φ → φr + iφi. In our
case, after integration over the spatial links, the degrees of freedom are the traced Polyakov lines

∫ [ Nτ

∏
τ=1

dU0(τ)

]
f (L,L∗) =

∫
dW f (L,L∗) . (3.2)

We may further simplify this by parametrizing the Polyakov lines in terms of two angles and bring
them into a diagonal form [20]

L(θ ,φ) = eiθ + eiφ + e−i(θ+φ), (3.3)

which introduces a potential term denoted by eV with

V =
1
2

ln(27−18|L|2 +8Re(L3)−|L|4) . (3.4)

Hence the integration measure we use in our simulation is the reduced Haar measure∫
dW =

∫
dLeV =

∫
π

−π

dθ

∫
π

−π

dφ e2V . (3.5)

This means instead of an integration over Nτ SU(3) matrices we have 2 complex degrees of freedom
on every spatial lattice point. Furthermore, having only diagonal matrices their inversion is trivial.
With these ingredients eq.(3.1) was solved numerically using stepsizes of around ε = 10−3 and
applying the adaptive stepsize technique proposed in [21] to avoid numerical instabilities.

3.1 Criteria for correctness

Unfortunately, it is well known that the complex Langevin algorithm is not a general solution
to the complex action problem as it converges to the wrong limit in some cases, including some
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Figure 5: Example for the continuum extrapolation (left). Shown are linear and a quadratic extrapolations
with one d.o.f.
Continuum extrapolated results for the transition to cold nuclear matter for T=10MeV (right).

parameter ranges for QCD [16, 19]. The failure can be attributed to insufficient localisation of the
probability distribution in the complex field space, and a set of criteria was developed to check
whether this localisation is sufficient [17]. A necessary condition is that the expectation value of
all observables vanishes after a Langevin operator L̂ has been applied to them,

〈L̂O[φ ]〉= 0, L̂ = ∑
a,x

(
∂

∂φa(x)
− ∂S

∂φa(x)

)
∂

∂φa(x)
. (3.6)

While, strictly speaking, this test is necessary on all observables of the theory, in practice only
a select few can be tested. In figure 3 we show the expectation value of the Polyakov loop as a
function of the step size of the Langevin algorithm for the effective theory to order κ2 (left) and κ4

(right). In both cases the criterion is fulfilled.
As a further and complementary check of the validity of the complex Langevin simulation, we

also compare with reweighted Monte Carlo results where this is possible, i.e. on small volumes.
As figure 2 shows, this test is also passed by the complex Langevin data for the expectation value
of the Polyakov loop as well as the baryon number density.

3.2 Convergence region of the hopping series

One of the most important values we want to determine is the region of convergence of the
effective theory. This is the region where the truncated theory is a good approximation to the
full theory. As criteria for convergence we choose the difference between expectation values ob-
tained from the κ2 and the κ4 action for differenct values of the expansion parameter κ2Nτ

Nc
. The

expansion parameter already shows that the region of convergence is limited in the direction of
low temperatures and light quarks, i.e. one can reach lower quark masses by raising the tempera-
ture. As an observable we choose the density in lattice units < a3n > at a fixed chemical potential,
µ0 = −log(2κ), with c(µ0) = 1. As can be seen in figure 4 the static limit is only a valid approx-
imation in the κ → 0 limit. If we define the limit of the region of convergence as a certain value
of the difference between < a3n >κ2 and < a3n >κ4 one can see that the resummed action offers a
better convergence. Therefore, we will use this version for our simulations.
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Figure 6: Polyakov Loop histograms in the transition region for three different temperatures, κ = 0.12 and
β = 5.7

3.3 Silver blaze property and onset to nuclear matter

In our previous work [12] we performed a continuum extrapolation for the transition to cold
nuclear matter based on the κ2 action. In figure 4 we repeat this calculations including the κ4 cor-
rections. This allows us to simulate smaller lattice spacings a = 0.08 fm without leaving the region
of convergence, since reducing a while keeping M

T fixed means going to higher κ . Nevertheless the
extrapolation suffers from considerable uncertainties, resulting in large errors in the high density
phase. This can be seen in fig. 5 (left), where we show the two best fits for our data at µ

mB
= 1 at

several lattice spacings. This is the chemical potential were different extrapolation fits differ the
most. The truncation error for our κ4 data is estimated as the difference to the data obtained from
the κ2 action. This data was then fittet to get a value for a→ 0.
As continuum result we took the average of the two best fits, the error was estimated as differenc
between those two fits. For each value of the chemical potential we tried several fits (linear and
quadratic) with one to three degrees of freedom. For the best fits we always achieved χ2

red < 2
as long as muB

mB
< 1.0014. The growing uncertainties in the high density region are caused by the

unphysical saturation on the lattice which limits the density to 2Nc quarks per lattice site, while in
the continuum no such saturation exists. In the low density region the Silver Blaze property, i.e.
the independence from chemical potential in the T → 0 limit below a critical value µc, can be seen.
Note that the results at κ4 are somewhat higher than our κ2-results in [12]. The inclusion of κ4

allows for a better estimate of the truncation error and therefore inclusion of data from lattices with
smaller lattice spacing.

As in our previous work [12], the accessible quark masses in the convergence region of the
effective theory are too high to realize the expected first order transition from the vacuum to the re-
gion of finite density, i.e. the transition proceeds as a smooth crossover. However, this changes if we
leave the convergence region by going to lower quark masses (κ = 0.12) and very low temperatures
with Nτ = O(103), where we see signals for a first order transition. Figure 6 shows distributions
of Polyakov Loop expectation values in the transition region. It clearly shows coexistence of two
distinct phases, i.e. the effective action describes a first order transition which disappears as tem-
perature is raised (Nτ is lowered). However, in order to make quantitative statements we will have
to extend the region of convergence by adding several higher orders in κ .
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