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1. Introduction

The chiral condensate provides an order parameter for the dynamical breaking of chiral symmetry

in QCD. A comprehensive list of recent related lattice QCD results is found in Ref. [1]. The present

work exploits the Banks-Casher relation [2], which links the chiral condensate Σ to the low end of

the spectral density ρ of the massless Dirac operator,

Σ = π lim
λ→0

lim
m→0

lim
V→∞

ρ(λ ,m) , (1.1)

with ρ(λ ,m) =
1

V

∞

∑
k=1

〈δ (λ −λk)〉 , (1.2)

m the current quark mass, λk the eigenvalues of the massless Dirac operator and V the four-volume.

The spectral density is a renormalizable quantity in QCD and can be computed on the lattice nu-

merically [3]. Still, for numerical evaluation it is more convenient to consider the mode number

ν(Λ,m) of the massive hermitian operator D†D−m2 with eigenvalues α ≤
√

Λ2 +m2, which is

renormalization-group invariant,

ν(Λ,m) = V

∫ Λ

−Λ
dλρ(λ ,m) (1.3)

νR(ΛR,mR) = ν(Λ,m) . (1.4)

The procedure was shown to work in Ref. [3] and applied to twisted–mass fermions in Ref. [4]. In

the following, we drop the subscript R, and all quantities are renormalized unless stated otherwise.

To extract the chiral condensate, we choose to define the effective condensate,

Σ̃(Λ1,Λ2,m) =
π

2V

ν(Λ2)−ν(Λ1)

Λ2 −Λ1

V→∞;m,Λ1,2→0−−−−−−−−−→ Σ , (1.5)

which agrees with Σ as Λ1,2 and m go to zero. This definition removes any threshold effects as long

as Λ1,2 are chosen large enough.

2. Chiral Perturbation Theory

The next-to-leading-order (NLO) expression in Chiral Perturbation Theory (ChPT) reads [3],

Σ̃NLO

Σ
(Λ1,Λ2,m) = 1+

mΣ

(4π)2F4

[
3 l̄6 +1− ln(2)−3ln

( Σm

F2M2

)
+ g̃ν

(
Λ1

m
,
Λ2

m

)]
(2.1)

with g̃ν (x1,x2) =
fν(x1)+ fν(x2)

2
+

1

2

x1 + x2

x2 − x1

[
fν(x2)− fν(x1)

]
, (2.2)

fν(x) =

(
x− 1

x

)
arctan(x)− π

2
x− ln(x+ x3) , (2.3)

where F is the pseudo-scalar decay constant in the chiral limit, l̄6 an NLO low-energy constant

(LEC) and M is a scale fixed to 139.6 MeV. This formula shows some remarkable properties. First

of all, there are no chiral logs ln(m) at fixed Λ. Second, investigating the function g̃ν , one finds
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id L/a mπ mπ L a Rτexp Rτint(mπ) Rτint(ν)|Λ=85MeV ∆cnfg Ncnfg

[MeV] [fm] [MDU] [MDU] [MDU] [MDU]

A3 32 490 6.0 0.0755(9)(7) 25 7 2(1) 128 55

A4 380 4.7 5 144 55

A5 330 4.0 5 36 55

B6 48 280 5.2 6 24 50

E5 32 440 4.7 0.0658(7)(7) 50 9 4(2) 96 92

F6 48 310 5.0 8 80 40

F7 270 4.3 7 72 50

G8 64 190 4.1 8 48 22

Table 1: Details of the simulation. L denotes the linear size of the lattice, a the lattice spacing

[9], mπ the pion mass, R the ratio of active links in DD-HMC [10] (R = 1 in MP-HMC [11]), τexp

and τint the exponential and integrated autocorrelation time, resp., MDU molecular dynamics units,

∆cnfg the separation of configurations between subsequent measurements and Ncnfg the number of

configurations on which ν is measured.

that Σ̃ is a decreasing function of Λ = (Λ1 +Λ2)/2 for any finite quark mass. Finally, in the chiral

limit all NLO-corrections vanish in the two-flavor theory [3, 5]. The dominant NNLO corrections

are expected to be of the form O(Λ2,mΛ,m2) and may spoil some of the peculiar properties of the

NLO expansion. In particular, additional LECs are expected to appear and the O(Λ2) corrections

can introduce a Λ-dependence in Σ̃ in the chiral limit.

At finite lattice spacing, the chiral expansion in NLO Wilson-ChPT was carried out in the

generic-small-quark-mass regime (GSM) [6],

Σ̃NLO
lat = Σ̃NLO −32(W0a)2 W ′

8m

Λ1Λ2

. (2.4)

The LEC W ′
8 was later shown to be negative [7, 8], which implies that also Σ̃NLO

lat is a decreasing

function of Λ also at finite lattice spacing. We remark that those NLO discretization effects, and

any Λ-dependence, are still absent in the chiral limit. The finite-volume effects have been discussed

on the same footing. In the present study we choose the parameters such that finite-volume effects

predicted by NLO ChPT are below the statistical accuracy.

3. Simulation details

We consider the O(a)-improved Wilson formulation of lattice QCD with a doublet of mass-

degenerate sea quarks. The configurations have been generated by the CLS-initiative, the most rele-

vant details for the present study are depicted in Tab. 1, further details are found in Refs. [9, 12, 13].

We determine the autocorrelation time of the mode number at Λ = 85 MeV for each value of the

lattice spacing, which turns out to be considerably smaller than the exponential autocorrelation

time related to the topology. Hence, with a sufficient spacing between subsequent measurements,

we can safely neglect the autocorrelation. We also remark that mπL ≥ 4 for all ensembles, such that

finite-volume effects are expected to be negligible. The mode number is evaluated using pseudo-

fermion fields ηk and rational polynomials to approximate the spectral projector PM to the low

3
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modes of the Dirac operator [3],

ν =
1

N

N

∑
k=1

〈(ηk,PMηk)〉 , M =
√

Λ2 +m2 . (3.1)

4. Fitting strategy and results
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Figure 1: Mode number ν vs. cutoff Λ (lhs) and effective condensate Σ̃ vs. Λ (rhs) for ensemble

G8 (mπ ≈ 190 MeV). All quantities are renormalized. Note the increasing behavior of Σ̃ which is

incompatible with NLO ChPT, and is interpreted as first indication for higher-order effects. Here

and in other plots for a single value of β , the error shown does not include the error on the scale.

The range of sensible values of Λ in the simulation is bounded from below by finite-volume and

discretization effects and from above by the applicability of ChPT. We compute ν(Λ) for seven

appropriate values of Λ in the range 20 MeV ≤ Λ ≤ 115 MeV. We show results for the mode

number (lhs) and for the effective condensate (rhs) for ensemble G8 in Fig. 1. Note the statistically

significant increasing dependence of Σ̃ on Λ which is incompatible with NLO ChPT, discussed in

Sec. 2. Such a behavior is observed in all ensembles, which can be interpreted as an indication for

higher-order effects. To fit the data in the full range of Λ and m we consider a fit form resting on

NLO WChPT, but capable of accounting for higher-order effects,

Σ̃ = c0(Λ)+ c1(Λ)m+ c2g(Λ1,Λ2,m) (4.1)

with g(Λ1,Λ2,m) = m

[
g̃ν

(
Λ1

m
,
Λ2

m

)
−3ln

(m

M

)]
. (4.2)

The Λ-dependent coefficients c0 and c1 account for the dominant NNLO effects discussed in Sec. 2,

in particular NLO discretization and NNLO Λ2 and mΛ effects.

The resulting fit function for β = 5.3 is shown vs. the quark mass for two distinct values of Λ in

Fig. 2 and vs. Λ in the chiral limit in Fig. 3. We find that the data is described nicely and the

χ2 per degree of freedom is close to one. The Λ-dependent coefficients c0 and c1 should exhibit

a plateau-behavior in the range of NLO ChPT. Such a behavior is verified only below 50 MeV,

while higher-order effects are visible above. This result supports the existence of a window in Λ

4
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Figure 2: Effective condensate Σ̃ vs. the quark mass for Λ = 25 MeV (lhs) and Λ = 62.5 MeV (rhs)

at β = 5.3. The fit function shown follows Eq. (4.1) and has a χ2 per degree of freedom close to

one. All fits shown in this article are performed using the double-elimination jackknife technique,

accounting for the correlation of the data among different Λ.
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Figure 3: Effective condensate Σ̃ vs. Λ in the chiral limit at β = 5.3. The data points shown derive

from the fit to the data following Eq. (4.1). The plateau-like behavior for Λ. 50 MeV is compatible

with NLO ChPT. Note the significant deviation from the plateau for Λ & 50 MeV, interpreted as

second indication for higher-order effects. The fit shown assumes an NNLO Λ2 term in the chiral

expansion of Σ̃ and describes the data nicely.

from which the condensate can be extracted reliably. Furthermore, the extracted Λ-dependencies

of c0 and c1 are compatible with the expectations from ChPT as discussed in Sec. 2. We are

thus led to specify particular functions for these coefficients, inspired by ChPT, in order to reduce

the number of fit parameters. In particular, we consider three main fitting strategies, given in

Tab. 2 together with the corresponding data ranges applied. The results for the three main fitting

strategies are shown vs. Λ in the chiral limit in Figs. 4 and 5 for β = 5.3 and 5.2, respectively.

The different strategies are well compatible towards the chiral limit, while we find discrepancies

at larger quark mass as expected. The pure NLO ChPT fit shows a systematic error of neglecting

Λ2 effects, which is almost of the order of the statistical error in the considered range of Λ. In

addition to the three different fitting strategies, we consider several additional consistency criteria,

5
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Figure 4: Effective condensate Σ̃ vs. Λ at β = 5.3 in the chiral limit for three different fitting

strategies. Left: fit form following NLO ChPT, excluding data on heavy quark masses m ≥ 20

MeV and heavy cutoffs Λ ≥ 50 MeV; middle: fit linear in the quark mass, excluding data on heavy

m; right: generic fit form (NLO plus parametrized NNLO). The respective fit functions are given

explicitly in Tab. 2. All relevant χ2/d.o.f. are close to one.
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Figure 5: Same as Fig. 4, but for β = 5.2. All relevant χ2/d.o.f. are close to one. The poor quality

of the NLO fit results from having too few data points in the relevant range; an extension of the

study is currently in progress.

Table 2: The three main fitting strategies used to extrapolate to the chiral limit.

strategy name Λ[MeV] m[MeV] functional form

NLO < 50 < 25 c0 + c1m+ c2g(.)+ c3a2m/Λ2

linear in m < 110 < 25 c0 + c1m + c3a2m/Λ2 + c4Λ2 + c5mΛ

“NNLO” < 110 < 40 c0 + c1m+ c2g(.)︸ ︷︷ ︸
NLO

+ c3a2m/Λ2

︸ ︷︷ ︸
NLO discret. eff.

+c4Λ2 + c5mΛ+ c6m2

︸ ︷︷ ︸
“NNLO”

like modelling/unmodelling the NNLO Λ-dependence of c0 and/or c1, using a denser set of light

Λ, or using ChPT/LQCD input for the parameter c2. We find a good agreement between all these

fitting strategies and conclude that the associated systematic errors on Σ are reasonably well under

control.

5. Conclusions

We presented preliminary results for the chiral condensate in two-flavor QCD from the Banks–

Casher relation. Higher-order effects are observed in the investigated parameter range and appro-

priate fitting strategies have been discussed. These are found to describe the data well and point to

6
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the existence of a window in Λ and m where Σ can be extracted reliably. In the chiral limit, we find

Σ1/3 = 0.308(6) GeV and Σ1/3 = 0.336(9) GeV for the lattice spacings a≈ 0.066 fm and a ≈ 0.076

fm, respectively. The quoted errors are estimated by quadratic summation over the statistical and

systematic errors of the dimensionless condensate and the scale. We plan to conclude the study

considering a third lattice spacing and taking the continuum limit.
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