
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
1
1
3

Restoration of Chiral Symmetry from a Boundary

B. C. Tiburzi∗ †

Department of Physics, The City College of New York, New York, NY, USA
Graduate School and University Center, The City Universityof New York, New York, NY, USA
RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY, USA
E-mail: btiburzi@ccny.cuny.edu

The imposition of Dirichlet boundary conditions in latticecomputations obstructs the formation

of a chiral condensate. We use chiral perturbation theory and meson models to address the effect

of a Dirichlet boundary on chiral symmetry breaking. While pions are the longest-range modes in

QCD, the restoration of chiral symmetry due to a boundary is shown not to depend upon the pion

Compton wavelength but rather on that of the sigma meson. Power-law finite size corrections

are exposed, and require prohibitively large lattices to overcome. We further speculate on the

frustration of the chiral condensate for the case of confinement to the surface of a sphere.
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1. Overview

This talk concerns consequences of imposing fixed boundary conditions on the quark fields in
QCD. Such boundary conditions present an obstruction in theformation of the chiral condensate;
and, as a result, can lead to restoration of chiral symmetry.The issue of symmetry restoration from
a boundary is an amusing topic in its own right, however, there is also a practical side to the matter.
An increasing number of lattice QCD simulations employ fixedboundary conditions on the quark
fields for various computational reasons. Consequently it is useful to have in mind the possibility
of restoring chiral symmetry, and to have a tool with which one can address this finite-size effect
quantitatively. This is the main result presented here, based on the work in [1]. We also provide a
few speculations about modeling confinement in light of our study of Dirichlet boundary conditions
and chiral symmetry breaking.

2. Chiral Perturbation Theory and a Boundary

Spontaneous breaking of chiral symmetry is central to the study of low-energy QCD. Through-
out we consider QCD with two light quark flavors, and in the limit that their masses are small,
mu,md ≪ ΛQCD. In the massless limit, the QCD action has a chiral symmetry of the formSU(2)L⊗
SU(2)R which is broken down to the vector subgroup by the formation of the chiral condensate,
〈ψ jRψiL〉 = −λδi j . This quantity provides an order parameter for chiral symmetry. Fluctuations
of the vacuum can be described by promoting the vacuum configuration to a field,δi j → Ui j ,
where the fieldU lives in the cosetSU(2)L ⊗SU(2)R/SU(2)V . A simple parameterization is
U = ei~π ·~τ/v = 1+ i~π ·~τ

v + · · ·, where~π describes the iso-triplet of Goldstone pions.
Provided the parameterv (which turns out to be the chiral-limit value of the pion decay con-

stant) is large, the fluctuations are Gaußian, and can be described by a phenomenological low-
energy effective theory, which is chiral perturbation theory. Within this theory, the effect of an
explicit source of chiral symmetry breaking, such as a degenerate quark massmq, is described at
lowest order by the term

L =−1
4

mqλ Tr
(

U +U†)=−λmq

(

1− 1
2v2

~π ·~π + · · ·
)

. (2.1)

Expanding this term to first order gives rise to the vacuum energy density−λmq, from which we
can identify the chiral limit value of the chiral condensate, 〈ψψ〉=−λ . At second order, we have
a mass term for the pions,m2

π = λmq/v2.
Chiral perturbation theory can be used to address long-range physics in QCD. As such, the

restoration of chiral symmetry on a compact manifold without a boundary has been treated some
time ago in a series of papers [2]. One example is the finite temperature chiral transition, which
arises due to the compactification of the Euclidean time direction. Another example is the restora-
tion of chiral symmetry at finite volume, with the pion fields subject to periodic boundary con-
ditions in space. At vanishing quark mass, chiral symmetry is not spontaneously broken in finite
volume. One can glimpse the culprit of the effect by looking at the one-loop correction to the chiral
condensate

∫

d4k
(2π)4

1
k2+m2

π
∼ m2

π logm2
π −→ 1

L2

[

1
(mπL)2 +

∞

∑
nµ 6=0

1
4π2nµnµ +(mπL)2

]

. (2.2)
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The infinite volume correction is a chiral logarithm, which vanishes in the chiral limit. On the other
hand, the finite volume expression suffers a singularity in the chiral limit. This singularity points to
the necessity of treating zero-momentum modes non-perturbatively, and the net effect is to restore
chiral symmetry by averaging the zero mode over all directions in the coset manifold.

Here we consider the effect of fixed boundary conditions on the condensate. These boundary
conditions frustrate the formation of the chiral condensate,〈ψψ〉

∣

∣

boundary= 0. Boundary conditions
leading to this behavior have been and continue to be imposedin lattice QCD calculations.

• Chopping of lattices: temporal Dirichlet boundary conditions have been used as atime-saver
to invert quark propagators on lattices of half their actualextent [3].

• Discontinuous external fields: naïve inclusion of a uniform external field leads to boundary
gradients, e.g. the vector potential~A = −Byx̂ produces a magnetic field of the form~B =

Bẑ[1−Lδ (y−L)]. Dirichlet boundary conditions have been sought to mitigate effects from
the boundary non-uniformity of such external fields [4].

• Rotating lattices: consideration of QCD in rotating frames leads one to imposespatial Dirich-
let boundary conditions to avoid edge effects [5].

• Schrödinger functional representation: imposes inhomogeneous Dirichlet boundary condi-
tions in time that lead to the vanishing of the scalar quark bilinear at the boundary [6]. Chi-
ral symmetry restoration is irrelevant for computing the renormalization of operators in the
massless Schrödinger functional scheme, however, hadron properties, such as those calcu-
lated in [7], are subject to effects from the frustration of the chiral condensate.

With these various applications, it makes sense to address quantitatively the effect of a Dirichlet
boundary on the chiral condensate. To this end, we choose to impose a Dirichlet boundary in one
direction, which we label "x", namelyψ(x = 0) = ψ(x = L) = 0. Other directions are treated
implicitly in this notation, and it will be irrelevant whether x is a spatial or temporal direction.

As a consequence of the boundary conditions, the pion fields~π ∼ ψγ5~τψ vanish at the bound-
ary, and the coset fieldU is unity at the boundary. The latter actually poses a major problem in the
computation of the chiral condensate. In chiral perturbation theory, the condensate is determined
from Eq. (2.1) by the expression

〈ψψ(x)〉 =−λ
4
〈U(x)+U†(x)〉+ · · · , (2.3)

where further terms are functions ofU(x) and its derivatives. Due to the boundary behavior of the
coset field, the condensate calculated by Eq. (2.3) will never vanish at the boundary. This is merely
an indication that the coset field cannot fluctuate off the manifold. To address chiral symmetry
restoration in the presence of the Dirichlet boundary, we require degrees of freedom beyond pions.
Adding further degrees of freedom changes the description from universal to model dependent.
As such, the imposition of a Dirichlet boundary potentiallygives one a probe of the dynamics
underlying spontaneous chiral symmetry breaking.
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3. Sigma Model

Here we use a very simplified model of spontaneous chiral symmetry breaking by including
the sigma meson degree of freedom. In the sigma model, the sigma field condenses to break the
chiral symmetry spontaneously. The Euclidean action density for the model is given by

L =
1
2

∂µS∂µS+
1
2

∂µ~P·∂µ~P− λmq

v
S+Λ(S2+~P2−v2)2. (3.1)

The model has anSO(4) global symmetry that is spontaneously broken toSO(3) by the vacuum
expectation value ofSand~P fields, namelyS2

0+~P2
0 = v2. This model has a long history and can be

derived from the NJL model, see [8]. The connection between the Casimir effect and spontaneous
symmetry breaking in the NJL model has been recently investigated [9].

To investigate the sigma model, it is convenient to introduce a polar decomposition of the
fields, S+ i~P ·~τ ≡ ΣU , whereΣ is a real field, andU an SU(2)-valued field. In terms of polar
variables, the sigma model action takes the form

L =
1
4

Tr
[

∂µΣ∂µΣ+Σ2∂µU∂µU†]− λmq

4v
Tr

[

Σ(U +U†)
]

+Λ(Σ2−v2)2, (3.2)

and has anSU(2)⊗SU(2) symmetry in the chiral limit that is spontaneously broken toSU(2)
when the fields pick up their vacuum expectation values,U0 = 1 andΣ0 = v. Expanding these
fields about their vevs, we find the Gell–Mann-Oakes-Renner relation,m2

π = λmq/v2, and a rela-
tion for the mass of the sigma mesonm2

σ = 8Λv2. This enables us to fix the parameterΛ from
phenomenology [10].

Imposing Dirichlet boundary conditions on the quark fields turns into boundary conditions
on the meson fields of the sigma model. As before, the unitary field satisfies the unit boundary
conditionsU(x= 0) =U(x= L) = 1, while the sigma field satisfies Dirichelt boundary conditions,
Σ(x= 0) = Σ(x= L) = 0. Computation of the chiral condensate from the sigma model,

〈ψψ(x)〉 =− λ
4v

Σ(x)
〈

U(x)+U†(x)
〉

(3.3)

will consequently satisfy the correct boundary conditions, compare with Eq. (2.3). The vacuum
expectation value of the sigma field is now generally coordinate dependent,Σ0 = Σ0(x), and can be
determined by minimizing the Euclidean action

S[Σ0] =
∫ L

0
dx

[

1
2

(

dΣ0

dx

)2

+Λ(Σ2
0−v2)2

]

, (3.4)

subject to the fixed endpoints,Σ0(0) = Σ0(L) = 0. Finding the condensate is an exercise in analyt-
ical mechanics that turns out to be soluble in terms of elliptic integrals.

The solution of the equation of motion forΣ0 has at most one turning point. While there are
solutions with multiple turning points, the value ofΣ0 will necessarily change sign, and the inclu-
sion of a small quark mass will raise the action of such solutions. Hence the action is minimized
for a solution with one turning point located at

maxΣ0 = v
√

1−ξ , (3.5)
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Figure 1: The solution for the mechanical analogue of energyξ as a function of the finite extentL of thex-
direction. Values ofL for whichξ ≥ 1 lead to the vacuum expectation valueΣ0(x) = 0, and hence correspond
to a complete restoration of chiral symmetry in the sigma model.

whereξ is the analogue of energy for the system. The energy can be determined as a function of
the lengthL, see Figure 1, and must satisfyξ < 1. Whenξ ≥ 1, the value of the sigma condensate
is zero everywhere.

From direct integration of the equations of motion, one can implicitly determineΣ0 as a func-
tion of x. In turn, this information can be used to determine the chiral condensate〈ψψ(x)〉, which
properly vanishes at the boundary. In the bulk of the lattice, a non-zero value of the condensate
can form providedL & 2fm. The maximum value of the condensate is located at the turning point,
namely atx = L

2 . At this point, the value of the condensate swiftly approaches the infinite vol-
ume value. Analytically we find the asymptotic formula〈ψψ(L

2)〉/〈ψψ〉= 1−4exp(−1
2mσ L). If

one can locate the physics near the midpoint (such as in simulations utilizing temporal Dirichlet
boundary conditions), the effect on the condensate is not too dramatic. For spatial Dirichlet bound-
ary conditions, however, a more natural measure of the finitesize effect is the volume-averaged
condensate

〈ψψ〉 ≡ 1
L

∫ L

0
dx〈ψψ(x)〉. (3.6)

The behavior of the volume-averaged condensate is shown in Figure 2 as a function ofL. Consid-
erable finite-size effects are seen, and analytically we canshow the approach to infinite volume is
only power law

〈ψψ〉/〈ψψ〉= 1− 4log2
mσ L

. (3.7)

Notice the dependence on the Compton wavelength of the sigmameson instead of the pion. In this
case, the long-range physics is controlled by a mode which isnot the most infrared. Finally we
must stress that the behavior of the condensate has been determined in a model-dependent fashion.
There are various avenues one can take to improve the model. Higher-lying scalar states have a
rather unusual spectroscopy. These should be included in a more detailed study, as they play a role
in the mechanism underlying chiral symmetry breakdown, see[11], and references therein.

4. Bag Model Confinement

In the remaining (space)time, we shall present some speculations concerning the relation be-
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Figure 2: Ratio of the volume-averaged condensate〈ψψ〉 to the infinite volume condensate〈ψψ〉 plotted
as a function of the finite extentL. The dotted curve shows the asymptotic formula Eq. (3.7).

tween bag-model confinement and chiral symmetry breaking inlight of our study of the sigma
model. The MIT bag model [12] enforces a boundary condition on the quark fields, having the
form~n ·ψ~γψ

∣

∣

R(θ ,φ) = 0, which ensures the confinement of color current in the model. We shall
take the spatial surfaceR(θ ,φ) to be a sphere. One can show that such boundary conditions im-
ply the vanishing of the scalar bilinear on the surface of thebag,ψψ

∣

∣

R = 0; and, therefore, the
vanishing of the chiral condensate〈ψψ〉

∣

∣

R = 0.
Within the sigma model, we can enforce the bag boundary condition by having the scalar

meson field vanish on the surface of a sphere of radiusR. One question that can be asked is
whether a non-zero chiral condensate can develop inside thebag. To address this question, one
minimizes the action for the vev of the sigma field

S[Σ0] =
∫

d~r

[

1
2
~∇Σ0 ·~∇Σ0+Λ(Σ2

0−v2)2
]

. (4.1)

Angular gradients contribute positively to the action and can be eliminated by seeking spherically
symmetric solutions. After rescaling the field,x ≡ 1

vmσ rΣ0 and renamingt ≡ mσ r, the problem
maps into the classical dynamics of a time-dependent force

ẍ=
x
2

(

x2

t2 −1

)

. (4.2)

Numerically there only appears to be a trivial solution to this equation,x(t) = 0, corresponding to
chiral symmetry restoration. What is surprising is that this remains true no matter how largeR is
taken to be. So far we have not been able to find a simple analytic argument as to why. The sigma
model points to an inability to confine chiral symmetry breaking to within a sphere.

Another question that can be posed concerns what happens outside the bag. Does a chiral
condensate exist far from the bag surface? Within the sigma model, the large radius behavior
of the sigma vev must have the formΣ0(r) ∼ v

mσ r exp
(

± imσ r√
2

)

, and hence there is no solution
with a uniform condensate at infinity. Consequently it is notpossible to break chiral symmetry
outside the bag. Furthermore as chiral symmetry is restoredinside the bag, another way to phrase
our observation is that the sigma model does not support the existence of spherical droplets of
chirally symmetric matter. Perhaps this is not surprising if we remind ourselves that the chiral
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phase transition is second order in the sigma model. If the model were to support chirally symmetric
spherical droplets as solutions, we might expect a first-order phase transition.

5. Summary

The use of Dirichlet boundary conditions can obviously alter the phase of QCD. Unlike pe-
riodic boundary conditions, the resulting finite volume effects are power law in nature; and, sur-
prisingly, are not controlled by the pion Compton wavelength. We argue that the sigma meson
plays a crucial role in the restoration of chiral symmetry from a boundary, even though the pions
are the most infrared modes of the theory. For lattice QCD calculations using spatial Dirichlet
boundary conditions, there is good cause to be concerned about such effects unless lattices are con-
siderably longer than severalfm. The burden of proof ultimately relies with practitioners of these
lattice methods. For calculations using temporal Dirichlet boundary conditions, one can localize
the physics in the bulk of the lattice, but one still should exercise caution concerning finite tempo-
ral effects. In the course of our study, we find that bag confinement and chiral symmetry breaking
appear to be incompatible. Here there is a curious dependence on the number of dimensions and
on the boundary geometry. We suggest that the inability to form spherical droplets that are chirally
symmetric is linked with the order of the chiral phase transition in the sigma model. It would be
quite interesting to study this direction further.
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