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1. Overview

This talk concerns consequences of imposing fixed boundargittons on the quark fields in
QCD. Such boundary conditions present an obstruction irfidimeation of the chiral condensate;
and, as a result, can lead to restoration of chiral symmetrg.issue of symmetry restoration from
a boundary is an amusing topic in its own right, however,gl&nlso a practical side to the matter.
An increasing number of lattice QCD simulations employ fikedindary conditions on the quark
fields for various computational reasons. Consequentbyuseful to have in mind the possibility
of restoring chiral symmetry, and to have a tool with whicte @an address this finite-size effect
guantitatively. This is the main result presented heregdas the work in [1]. We also provide a
few speculations about modeling confinement in light of audy of Dirichlet boundary conditions
and chiral symmetry breaking.

2. Chiral Perturbation Theory and a Boundary

Spontaneous breaking of chiral symmetry is central to tidysbf low-energy QCD. Through-
out we consider QCD with two light quark flavors, and in theifithat their masses are small,
my, Mg < Agcp. In the massless limit, the QCD action has a chiral symmétiiyeoformSU(2) @
SU(2)r which is broken down to the vector subgroup by the formatibthe chiral condensate,
(@irYi) = —A&j. This quantity provides an order parameter for chiral sytnyné-luctuations
of the vacuum can be described by promoting the vacuum coafign to a field,&; — U;j,
where the fieldJ lives in the cosetSU(2). @ SU(2)r/SU(2)v. A simple parameterization is
U=¢mT/v=q4InT ”” +---, whereTt describes the iso-triplet of Goldstone pions.

Provided the parametar(which turns out to be the chiral-limit value of the pion dgcan-
stant) is large, the fluctuations are Gaufian, and can beiloeddy a phenomenological low-
energy effective theory, which is chiral perturbation ttyeoWithin this theory, the effect of an
explicit source of chiral symmetry breaking, such as a deg#ta quark massy, is described at
lowest order by the term
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Expanding this term to first order gives rise to the vacuumgndensity—Amy, from which we
can identify the chiral limit value of the chiral condensai@y) = —A. At second order, we have
a mass term for the pionsy = A mg/V2.

Chiral perturbation theory can be used to address longerahgsics in QCD. As such, the
restoration of chiral symmetry on a compact manifold withadoundary has been treated some
time ago in a series of papers [2]. One example is the finitpéeature chiral transition, which
arises due to the compactification of the Euclidean timection. Another example is the restora-
tion of chiral symmetry at finite volume, with the pion fieldsh§ect to periodic boundary con-
ditions in space. At vanishing quark mass, chiral symmesmyat spontaneously broken in finite
volume. One can glimpse the culprit of the effect by lookihtha one-loop correction to the chiral
condensate
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The infinite volume correction is a chiral logarithm, whidmishes in the chiral limit. On the other
hand, the finite volume expression suffers a singularityhé@ahiral limit. This singularity points to
the necessity of treating zero-momentum modes non-patiuely, and the net effect is to restore
chiral symmetry by averaging the zero mode over all diregtim the coset manifold.

Here we consider the effect of fixed boundary conditions encttndensate. These boundary
conditions frustrate the formation of the chiral condeesafy) |boundary: 0. Boundary conditions
leading to this behavior have been and continue to be impiodattice QCD calculations.

e Chopping of latticestemporal Dirichlet boundary conditions have been usedt@sexsaver
to invert quark propagators on lattices of half their actdént [3].

e Discontinuous external fieldsiaive inclusion of a uniform external field leads to bougdar
gradients, e.g. the vector potentil= —ByX produces a magnetic field of the forfh=
B2[1—-L&(y—L)]. Dirichlet boundary conditions have been sought to mitigsfects from
the boundary non-uniformity of such external fields [4].

e Rotating latticesconsideration of QCD in rotating frames leads one to imppsgial Dirich-
let boundary conditions to avoid edge effects [5].

e Schrodinger functional representatioimposes inhomogeneous Dirichlet boundary condi-
tions in time that lead to the vanishing of the scalar qualikdsr at the boundary [6]. Chi-
ral symmetry restoration is irrelevant for computing theamnalization of operators in the
massless Schrddinger functional scheme, however, hadopegies, such as those calcu-
lated in [7], are subject to effects from the frustrationtwf thiral condensate.

With these various applications, it makes sense to addugmstitatively the effect of a Dirichlet
boundary on the chiral condensate. To this end, we choosegose a Dirichlet boundary in one
direction, which we labelX', namely (x = 0) = ¢(x = L) = 0. Other directions are treated
implicitly in this notation, and it will be irrelevant wheghx is a spatial or temporal direction.

As a consequence of the boundary conditions, the pion freldgpys T vanish at the bound-
ary, and the coset field is unity at the boundary. The latter actually poses a majablpm in the
computation of the chiral condensate. In chiral pertudratheory, the condensate is determined
from Eq. (2.1) by the expression

W) = 3000 +0100) + - (2.3)
where further terms are functionsdfx) and its derivatives. Due to the boundary behavior of the
coset field, the condensate calculated by Eq. (2.3) will neamish at the boundary. This is merely
an indication that the coset field cannot fluctuate off the ifolth To address chiral symmetry
restoration in the presence of the Dirichlet boundary, vagiire degrees of freedom beyond pions.
Adding further degrees of freedom changes the descriptiom funiversal to model dependent.
As such, the imposition of a Dirichlet boundary potentialiiyes one a probe of the dynamics
underlying spontaneous chiral symmetry breaking.
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3. Sigma Model

Here we use a very simplified model of spontaneous chiral sgtmynibreaking by including
the sigma meson degree of freedom. In the sigma model, theadigld condenses to break the
chiral symmetry spontaneously. The Euclidean action tkefsi the model is given by

= %ausaus+ %auﬁ-a,j—’\qusw\(serﬁ?—vz)?. (3.1)
The model has a8Q(4) global symmetry that is spontaneously brokers@3) by the vacuum
expectation value ddandP fields, namelys + P3 = v2. This model has a long history and can be
derived from the NJL model, see [8]. The connection betwherCasimir effect and spontaneous
symmetry breaking in the NJL model has been recently inyatstd [9].

To investigate the sigma model, it is convenient to intredacpolar decomposition of the
fields, S+iP-T = U, whereX is a real field, andJ an SU(2)-valued field. In terms of polar
variables, the sigma model action takes the form

A
Z = %Tr [0,20,% +329,Ud,UT] — 4—':/“Tr [ZU+UD] +A(Z2 VP2, (3.2)

and has arBU(2) ® SU(2) symmetry in the chiral limit that is spontaneously brokerStd(2)
when the fields pick up their vacuum expectation vallks= 1 andZ, = v. Expanding these
fields about their vevs, we find the Gell-Mann-Oakes-Renelation,m? = Amq/v2, and a rela-
tion for the mass of the sigma meso, = 8Av?. This enables us to fix the parameferfrom
phenomenology [10].

Imposing Dirichlet boundary conditions on the quark fieldeng into boundary conditions
on the meson fields of the sigma model. As before, the unitafg fatisfies the unit boundary
conditionsU (x=0) =U (x=L) = 1, while the sigma field satisfies Dirichelt boundary corai,
>(x=0) = ¥(x=L) =0. Computation of the chiral condensate from the sigma model

W) = 220 (U0 +U"(0) 33)

will consequently satisfy the correct boundary conditjocsmpare with Eq. (2.3). The vacuum
expectation value of the sigma field is now generally co@tiependenk,, = Zy(x), and can be
determined by minimizing the Euclidean action

2
S = /Ode [% (%) +/\(Z%_v2)2] , (3.4)

subject to the fixed endpointg&y(0) = Zy(L) = 0. Finding the condensate is an exercise in analyt-
ical mechanics that turns out to be soluble in terms of élijptegrals.

The solution of the equation of motion fap has at most one turning point. While there are
solutions with multiple turning points, the value B§ will necessarily change sign, and the inclu-
sion of a small quark mass will raise the action of such sofigti Hence the action is minimized
for a solution with one turning point located at

maxZg=Vy/1—¢&, (3.5
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Figure 1: The solution for the mechanical analogue of enef@s a function of the finite extehtof the x-
direction. Values oL for which& > 1 lead to the vacuum expectation vakigx) = 0, and hence correspond
to a complete restoration of chiral symmetry in the sigma ehod

whereé is the analogue of energy for the system. The energy can kentieed as a function of
the lengthL, see Figure 1, and must satisfy< 1. Whené > 1, the value of the sigma condensate
is zero everywhere.

From direct integration of the equations of motion, one caplicitly determineXy as a func-
tion of x. In turn, this information can be used to determine the thvadensateé@y(x)), which
properly vanishes at the boundary. In the bulk of the lattec@on-zero value of the condensate
can form provided. > 2f m The maximum value of the condensate is located at the wipomt,
namely atx = % At this point, the value of the condensate swiftly apprescthe infinite vol-
ume value. Analytically we find the asymptotic formyi@y(5)) /(@) = 1— dexp—2mglL). If
one can locate the physics near the midpoint (such as in afion$ utilizing temporal Dirichlet
boundary conditions), the effect on the condensate is wait@matic. For spatial Dirichlet bound-
ary conditions, however, a more natural measure of the fante effect is the volume-averaged
condensate

W) =+ / dX(WY(X)). (3.6)

The behavior of the volume-averaged condensate is showigime=2 as a function df. Consid-
erable finite-size effects are seen, and analytically wesbamw the approach to infinite volume is
only power law Alog2
(@y)/(QyY) =1— oL
Notice the dependence on the Compton wavelength of the gigasan instead of the pion. In this
case, the long-range physics is controlled by a mode whicloighe most infrared. Finally we
must stress that the behavior of the condensate has beemuhetet in a model-dependent fashion.
There are various avenues one can take to improve the modghet-ying scalar states have a
rather unusual spectroscopy. These should be included ora detailed study, as they play a role
in the mechanism underlying chiral symmetry breakdown[$&E and references therein.

(3.7)

4. Bag Model Confinement

In the remaining (space)time, we shall present some spg@ngaconcerning the relation be-
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Figure 2: Ratio of the volume-averaged condens@ge)) to the infinite volume condensatgy) plotted
as a function of the finite exteht The dotted curve shows the asymptotic formula Eq. (3.7).

tween bag-model confinement and chiral symmetry breakingglrt of our study of the sigma
model. The MIT bag model [12] enforces a boundary conditiartlee quark fields, having the
form ﬁ-wV(‘U\R(W) = 0, which ensures the confinement of color current in the modé shall

take the spatial surfad®(8, @) to be a sphere. One can show that such boundary conditions im-
ply the vanishing of the scalar bilinear on the surface ofhhg,ww\R = 0; and, therefore, the
vanishing of the chiral condensaf@ )|, = 0.

Within the sigma model, we can enforce the bag boundary tondby having the scalar
meson field vanish on the surface of a sphere of raBusOne question that can be asked is
whether a non-zero chiral condensate can develop insidbate To address this question, one
minimizes the action for the vev of the sigma field

S5o] = / dr E [%0- ﬁzo+/\(zg—v2)2} . (4.1)

Angular gradients contribute positively to the action aad be eliminated by seeking spherically
symmetric solutions. After rescaling the fiekl= %mgrzo and renaming = mgr, the problem
maps into the classical dynamics of a time-dependent force

ngc—;—l). 4.2)

Numerically there only appears to be a trivial solution tis #quationx(t) = 0, corresponding to
chiral symmetry restoration. What is surprising is thas tt@mains true no matter how largds
taken to be. So far we have not been able to find a simple analgument as to why. The sigma
model points to an inability to confine chiral symmetry briegkto within a sphere.

Another question that can be posed concerns what happesisi@tiie bag. Does a chiral
condensate exist far from the bag surface? Within the sigrodein the large radius behavior
of the sigma vev must have the forly(r) ~ %exp i"\“/‘g , and hence there is no solution
with a uniform condensate at infinity. Consequently it is possible to break chiral symmetry
outside the bag. Furthermore as chiral symmetry is resiogede the bag, another way to phrase
our observation is that the sigma model does not supportxiséeace of spherical droplets of

chirally symmetric matter. Perhaps this is not surprisingié remind ourselves that the chiral
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phase transition is second order in the sigma model. If treetneere to support chirally symmetric
spherical droplets as solutions, we might expect a firstopthase transition.

5. Summary

The use of Dirichlet boundary conditions can obviouslyralte phase of QCD. Unlike pe-
riodic boundary conditions, the resulting finite volumeeeft are power law in nature; and, sur-
prisingly, are not controlled by the pion Compton waveldngtWe argue that the sigma meson
plays a crucial role in the restoration of chiral symmetignira boundary, even though the pions
are the most infrared modes of the theory. For lattice QCButalions using spatial Dirichlet
boundary conditions, there is good cause to be concerned sibch effects unless lattices are con-
siderably longer than severfain The burden of proof ultimately relies with practitionerfstirese
lattice methods. For calculations using temporal Dirithieundary conditions, one can localize
the physics in the bulk of the lattice, but one still shouléreise caution concerning finite tempo-
ral effects. In the course of our study, we find that bag confer and chiral symmetry breaking
appear to be incompatible. Here there is a curious depeadanthe number of dimensions and
on the boundary geometry. We suggest that the inability o fepherical droplets that are chirally
symmetric is linked with the order of the chiral phase traosiin the sigma model. It would be
quite interesting to study this direction further.
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