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1. Introduction

Symmetry breaking mechanisms play a central part in the unification of gauge forces. The
gauge symmetry of a unified theory must be partially and spontaneously broken at low energies to
describe the nature. In the standard model (SM) of electroweak interactions, the Higgs scalar field
induces the symmetry breaking.

Among the several mechanism for gauge symmetry breaking there is the intriguing scenario
of dynamical breaking by adding compact extra dimensions. In brief, when the extra dimensional
space is not simply-connected, the non-vanishing phases θH of the Wilson line integral of gauge
fields along a non-contractible loop in these extra dimensions can break the symmetry of the vac-
uum at one loop level [1, 2, 3, 4]. These phases θH are the Aharonov-Bohm (AB) phases in the
extra dimensional space, which, despite its vanishing field strengths, affect physics leading to gauge
symmetry breaking. This is the so called the Hosotani mechanism where the 4D Higgs boson is a
part of gauge fields in higher dimensions. The values of θH are determined dynamically. Recently,
the Hosotani mechanism has been applied to the electroweak interactions [5, 6, 7, 8, 9, 10, 11].

It should be pointed out that the Hosotani mechanism as a mechanism of gauge symmetry
breaking has been so far established only in perturbation theory. It is based on the evaluation of the
effective potential Veff(θH) at the one-loop level. It is still not clear whether the mechanism operates
at the non-perturbative level. This work is a first investigation on the non-perturbative realization of
the Hosotani mechanism using lattice calculations. We take advantage of the fact that the Hosotani
mechanism works in any dimensions such as Rn× S1, so we focus on the four-dimensional case
(R3×S1) in which the lattice gauge theory has been firmly established.

In this work, we would like to point out the connection between the phases identified by Cossu
and D’Elia [12] (in a work inspired by the semi-classical study [13]) and the Hosotani mecha-
nism [14]. We also refine the connection by generalizing the boundary conditions for fermions in
the fundamental representation. The rest of the report is presenting the theoretical background in
Sect. 2 and the lattice calculations in Sect. 3. This proceeding is a summarized version of the full
paper recently published online [15].

2. Continuum gauge theory on Rd−1×S1

As the simplest realization of the Hosotani mechanism, we consider SU(3) gauge theory cou-
pled with fermions in the fundamental representation (ψfd) and/or in the adjoint representation
(ψad) in d-dimensional flat space-time with one spatial dimension compactified on S1 [16, 17]. The
circle S1 has coordinate y with a radius R so that y ∼ y+ 2πR. In terms of these quantities the
Lagrangian density is given by:

L =−1
2

TrFMNFMN + ψ̄fd(Dfd−mfd)ψfd +Tr ψ̄ad(Dad−mad)ψad (2.1)

where Dfd and Dad denote covariant Dirac operators. The gauge potentials AM = (Aµ ,Ay) (µ =

1, · · · ,d−1) and fermions ψfd,ψad satisfy the following boundary conditions:

AM(x,y+2πR) =VAM(x,y)V−1,

ψfd(x,y+2πR) = eiαfd V ψfd(x,y), ψad(x,y+2πR) = eiαad V ψad(x,y)V−1,
(2.2)
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where V ∈ SU(3). With these boundary conditions the Lagrangian density is single-valued on S1,
namely L (x,y+ 2πR) = L (x,y), so that physics is well-defined on the manifold Rd−1× S1. It
has been proven (see [4]) that physics is independent of V at the quantum level so we adopt V = I
hereafter.

There is a residual gauge invariance given the boundary conditions (2.2). Under a gauge
transformation Ω, the boundary condition (2.2) with V = I is maintained, provided Ω(x,y+2πR) =
Ω(x,y). The eigenvalues of W = Pexp

(
ig
∫ 2πR

0 dyAy(x,y)
)

are gauge invariant. They are denoted

as
{

eiθ1 ,eiθ2 ,eiθ3
}

where ∑
3
j=1 θ j = 0 (mod 2π) . Constant configurations of Ay 6= 0 with Aµ = 0

yield vanishing field strengths 〈FMN〉 = 0, but in general give W 6= I, or nontrivial θH . We stress
that this class of configurations is not gauge equivalent to AM = 0 if we want to keep the boundary
conditions constant. The θ j’s are the elements of AB phase θH in the extra dimension. These
are the dynamical degrees of freedom of the gauge fields affecting physical quantities as in the
Aharonov-Bohm effect in quantum mechanics.

2.1 Symmetry breaking

To see the effect of the AB phases on the spectrum of gauge bosons we expand the fields of the
SU(3) gauge theory on Rd−1× S1 in Kaluza-Klein modes of the extra-dimension: [4] where each
KK mode has the following mass-squared in the (d−1)-dimensional space-time.

A(n)
µ :
(

m(n)
A

)2

jk
=

1
R2

(
n+

θ j−θk

2π

)2
,

ψ
(n)
fd :

(
m(n)

fd

)2

j
=

1
R2

(
n+

θ j +αfd

2π

)2
+m2

fd ,ψ
(n)
ad :

(
m(n)

ad

)2

jk
=

1
R2

(
n+

θ j−θk +αad

2π

)2
+m2

ad .

In particular, from the gauge boson mass of the zero-mode (m(0)
A )2, we can discuss the re-

maining gauge symmetry realization after the compactification. Because the mass is given by the
difference θ j − θk, it is classically expected that the mass spectrum becomes SU(3) asymmetric
unless θ1 = θ2 = θ3 (mod 2π). However, as a dynamical degree of freedom, θH has quantum
fluctuation. In the confined phase, these fluctuations are large enough for the SU(3) symmetry to
remain intact. For a moderate gauge coupling and sufficiently small R, θH would take nontrivial
values to break SU(3) symmetry depending on the fermion content. To determine which value
of θH is realized at the quantum level, it is convenient to evaluate the effective potential Veff(θH),
whose global minimum is given by the vacuum expectation values (VEVs) of θH . We show the
plots for the two flavors of adjoint fermions case in figure 1 in order to compare with the lattice
simulations. In lattice simulations one measures the VEVs of P3 and P8. The absolute value of P3

is strongly affected by quantum fluctuations of θH and is reduced at strong gauge couplings. The
phase of P3, on the other hand, is less affected by quantum fluctuations in the weak coupling regime
so that transitions from one phase to another should be seen as changes in the phase of P3. Indeed,
this is precisely what has been found in ref. [12]. The classifications of the phases are summarized
in Table 1, where we also include the confined phase, denoted by X , in which θH fluctuate and take
all possible values.
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Figure 1: Effective potential for the case of Nad = 2 adjoint fermion with periodic boundary condition
(αad = 0) for the values of madR in d = 4. They are corresponding to the X phase, the B phase and the C
phase, respectively. Lower values of Veff are indicated by lighter colors.

θH = (θ1,θ2,θ3) with permutations P3 P8 Global Symmetry, Phase

X Large quantum fluctuations 0 −1
8 SU(3), confined

A1;A2,3 (0,0,0); (±2
3 π,±2

3 π,±2
3 π) 1; e±2πi/3 1 SU(3), deconfined

B1;B2,3 (0,π,π); (±2
3 π,∓1

3 π,∓1
3 π) −1

3 ; 1
3 e∓πi/3 0 SU(2) × U(1), split

C (0, 2
3 π,−2

3 π) 0 −1
8 U(1) × U(1), reconfined

Table 1: Classification of the location of the global minima of Veff(θH). In the last column the names of the
corresponding phases termed in ref. [12] are also listed for X ,A,B and C.

3. Lattice results

We compute Polyakov loops P3 and P8 on the 163× 4 volume gauge configurations sampled
with the weight e−Sg−S f . The transition points were determined using the susceptibility χΩ =

N3
x
(
〈Ω2〉−〈Ω〉2

)
of the observable Ω∈ {|P3|,P8}which scales with the lattice volume at the phase

transitions. In connection to the perturbative results, where the relevant parameter is mfdR or madR,
increasing β has the effect of decreasing those parameters, due to the running of the renormalized
fermion mass in the lattice unit. We estimate statistical errors by employing the jackknife method
with appropriate bin sizes to incorporate any auto-correlations.

3.1 Phase structure with adjoint fermions

In the numerical simulation for (Nad,Nfd) = (2,0), we use bare masses mada = ma = 0.05 and
0.10 changing β covering the range 5.3≤ β ≤ 6.5. Periodic boundary condition is used (αad = 0)
in the compact direction, which is different from the case with anti-periodic boundary conditions
(finite temperature) where only the confined and deconfined phases are realized [18]. The essen-
tially same setup is included in the study of ref. [12]. To explore the phase structure in heavier mass
region, we also examine bare masses mada = ma = 0.50 and 0.80 for the range of 5.5 ≤ β ≤ 9.8
and 5.5≤ β ≤ 20.0, respectively.
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We summarize the phase space and the phase transition points obtained in figure 3.1. For
further discussion on the properties of these transitions, a more detailed study on the finite size
scaling has to be done.

Because the B-C transitions are hard to observe clearly from the Polyakov loops or the sus-
ceptibilities, we estimate empirically the interval where the transition occurs by inspection of the
θs distributions. Due to the subjective character of the analysis, we do not quote any error, just an
interval where the transition is occurring.

X

C

B

A

Confined/Deconfined
Deconfined/Split
Split/Reconfined

β

6

8

10

12

14

16

18

20

22

ma

0 0.2 0.4 0.6 0.8

5.5

5.75

6

0 0.2 0.4 0.6 0.8

Figure 2: Phase diagram for the Nad = 2 adjoint fermion system with periodic boundary condition in the
compact dimension. In the window, the X-A transition line is compared with the pure gauge case (dashed
line) [19].

3.2 Phase structure with fundamental fermions

We study the dependence of P3 and P8 on the boundary phase αfd for several values of β in
the presence of fundamental fermions with U(1) phase αfd as the boundary condition. This setup is
formally equivalent to finite temperature QCD with an imaginary chemical potential ν = π +αfd.
To test the perturbative predictions we carry out a numerical simulation with (Nad,Nfd) = (0,4).
Since we are interested in the symmetries of the Polyakov loop, we determine the locations of
the transition points by the peak points of χ|P3|, contrary to the previous works where the chiral
condensate was used to locate the critical points. The resulting distributions of P3 are shown in
Fig. 3.

Having confirmed the Roberge-Weiss periodic structure [20] and using the symmetry about
αfd = π/3, we concentrate on the region 0 ≤ αfd < π/3 to determine the A-B (or, confined-
deconfined) transition points. For αfd = nπ/12 with n = 0,1,2,3,4, we investigate the suscep-
tibilities of |P3| and P8 along with the analysis in the previous section. We obtain the well known
Roberge-Weiss phase diagram in terms of the phases predicted by the Hosotani mechanism. The
deconfined phases at high β are identified as the Ai phases of table 1.

3.3 Eigenvalues of the Wilson line

In the previous sections we identified four phases in the case of adjoint fermions with periodic
boundary condition. The comparison of the measured values for P3 and P8 with the ones listed in
Table 1 suggests that these phases are related to the Hosotani mechanism. In order to clarify the
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Figure 3: (First three panels) Distributions of P3 obtained on gauge ensembles with a variation of αfd for
β = 5.00 (left), 5.15 (center) and 5.20 (right). The degrees of αfd used in the calculation are indicated with
the corresponding data. Overall, data points with same degrees of αfd are indicated by same colors.

connection of these phases with the perturbative effective potential predictions we show the results
of the eigenvalues of the Wilson line wrapping around the compact dimension.

In this analysis care must be taken in order to disentangle the effect of the Haar measure for
SU(3) [21] ∏i> j sin2 θi−θ j

2 . This measure term gives a strong repulsive force for the eigenvalues.
We estimated numerically the effect of this term and renormalized the lattice results accordingly.
The A, B and C phases should show different degeneracy of eigenvalues as shown in table 1.

The results of our investigations are shown in the panels of Fig. 4. Each one of them displays
the density plots for the Polyakov loop eigenvalue phases (θ1,θ2). Smearing is applied to the con-
figuration before measurements to filter the ultraviolet modes that are not relevant for the location
of the minima of Veff.

X (confined) β = 5.30

θ 2
/π

−1

−0.5

0

0.5

1

θ1/π
−1 −0.5 0 0.5 1

A (deconfined) β = 5.46

θ 2
/π

−1

−0.5

0

0.5

1

θ1/π
−1 −0.5 0 0.5 1

B (split) β = 5.95

θ 2
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−0.5

0

0.5
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C (reconfined) β = 6.50

θ 2
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−0.5

0

0.5
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θ1/π
−1 −0.5 0 0.5 1

Figure 4: Density plots at several β ’s for the Polyakov Loop eigenvalues (in the θ1/π - θ2/π plane). Here
the original data is divided by the Haar measure distribution. From left to right, the panels correspond to the
X , A, B and C phases. The first panel is white as a result of the calculation. Darker colors denote the highest
density regions.

Although a bit noisy because of the procedure, it shows the expected features of the perturba-
tive potential, and can be directly compared with the perturbative prediction of Fig. 1. The plots,
from left to right, are respectively the X , A, B, and C phases. The distribution in the X (confined)
phase is a constant i.e. unity so the plot is a white image, which is a manifestation of a uniform
random distribution of the eigenvalues in the two dimensional plane. An interesting finding is
that the C phase shows a completely different behavior from the confined one. The eigenvalues
are now not distributed in a random fashion but located in peaks around the Z3 symmetric values
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θi = 0,±2π/3 (again some artifacts appear), with maximal repulsion between them (see a semi-
classical analysis e.g. in [22]). All the four predicted phases are clearly represented by the data,
which is a strong indication of the realization of the Hosotani mechanism in 3+1 dimensions even
at the non-perturbative level.

Numerical simulations are performed on the Hitachi SR16K at Kyoto University and the
SR16K and the IBM System Blue Gene Solution at KEK under its Large-Scale Simulation Pro-
gram (No. T12-09 and 12/13-23). This work was supported in part by grants from the Ministry of
Education and Science (No. 20244028, 23104009, 21244036). G. C and J. N are supported in part
by Strategic Programs for Innovative Research (SPIRE) Field 5. H. H is partly supported by NRF
Research Grant 2012R1A2A1A01006053 (HH) of the Republic of Korea.

References

[1] Hosotani Y. Phys.Lett., B126:309, 1983.

[2] Davies A. and McLachlan A. Phys.Lett., B200:305, 1988.

[3] Davies A. and McLachlan A. Nucl.Phys., B317:237, 1989.

[4] Hosotani Y. Annals Phys., 190:233, 1989.

[5] Burdman G. and Nomura Y. Nucl.Phys., B656:3–22, 2003.

[6] Csaki C., Grojean C., and Murayama H. Phys.Rev., D67:085012, 2003.

[7] Agashe K., Contino R., and Pomarol A. Nucl.Phys., B719:165–187, 2005.

[8] Cacciapaglia G., Csaki C., and Park S.C. JHEP, 0603:099, 2006.

[9] Medina A.D., Shah N.R., and Wagner C.E. Phys.Rev., D76:095010, 2007.

[10] Hosotani Y., Oda K., Ohnuma T., and Sakamura Y. Phys.Rev., D78:096002, 2008.

[11] Hosotani Y., Noda S., and Uekusa N. Prog.Theor.Phys., 123:757–790, 2010.

[12] Cossu G. and D’Elia M. JHEP, 0907:048, 2009.

[13] Unsal M. and Yaffe L.G. Phys.Rev., D78:065035, 2008.

[14] Hosotani Y. AIP Conf.Proc., 1467:208–213, 2012.

[15] Cossu G., Hatanaka H., Hosotani Y., and Noaki J.I. arXiv:1309.4198 [hep-lat].

[16] Hatanaka H. Prog.Theor.Phys., 102:407–418, 1999.

[17] Hosotani Y. Proceedings of SCGT2004, pages 17–34, 2005.

[18] Karsch F. and Lutgemeier M. Nucl.Phys., B550:449–464, 1999.

[19] Fukugita M., Okawa M., and Ukawa A. Phys.Rev.Lett., 63:1768, 1989.

[20] Roberge A. and Weiss N. Nucl.Phys., B275:734, 1986.

[21] Bruckmann F. arXiv:1007.4052 [hep-ph], 2010.

[22] Poppitz E., Schäfer T., and Ünsal M. JHEP, 1303:087, 2013.

7


