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The COMPASS experiment at CERN accesses pion-photon reactions via the Primakoff effect,
where high-energetic pions react with the quasi-real photon field surrounding the target nuclei.
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resonances are produced and their radiative coupling is investigated.
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1. Pion-photon reactions as test of chiral perturbation theory

Properties of the pions (7, 7% 7) are of crucial interest in understanding quantum chromo-
dynamics (QCD), since the pion is the lightest system featuring confinement of quarks and gluons
by the strong force. As such, the pions are identified in the framework of the low-momentum ex-
pansion of QCD, chiral perturbation theory (ChPT), as the Goldstone bosons emerging from the
spontaneous breaking of chiral symmetry.

Pion-pion scattering has been studied in several approaches, e.g. in kaon decays, and success-
fully described within ChPT. In contrast, for pion-photon interactions even the most fundamental
process of pion-photon, i.e. Compton, scattering has remained a riddle for the past 30 years: The
leading structure-dependent term in this process is the polarisability, and its extraction from the
first experimental data in 1983, confirmed by later experiments, resulted in values significantly
higher than expected from most of the theoretical approaches. Clarifying this subject is the prime
motivation for the experimental work presented here. On top of this, other pion-photon interactions
with more pions in the final state came into reach, and are studied as well. This is, on the one hand,
an independent research subject by itself, on the other hand, it represents a powerful check of the
common aspects in the employed experimental techniques.

2. Embedding the process: Primakoff technique

Henry Primakoff proposed in 1951 [1] to make use of the intense electric field in the proximity
of nuclei, which can be treated in a high-relativistic reference frame as a source of quasi-real
photons, to study strongly-interacting particles. The original idea concerned the measurement of
the 7¥ lifetime by photon-photon fusion, but it was later realized that interactions of high-energetic
hadrons with the nuclear Coulomb field represent similarly a scattering off the quasi-real photon
density, and consequently the whole class of such hadron interactions is referred to as Primakoff
reactions. The process is depicted in Fig. 1. The main contribution comes from impact parameters
of the pions of a few nuclear radii, where the electric field is as strong as several 100 kV/fm.
This displays how even a small polarisability as it is expected for hadrons can be measured, as
a modification of the cross-section for bremsstrahlung emission. The cross-section formula for a
Primakoff reaction 7-A — X A on a nucleus A reads, in one-photon exchange approximation (see
e.g. 12]),
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and bases on the factorization into the quasi-real photon density multiplying the cross-section
doyy/d® for the real-photon subprocess 7~y — X . Mandelstam-s is the squared total energy in
the 77~y subsystem, Q7 is the momentum transfer to the nucleus A, o ~ 1/137 is the fine structure
constant, my the rest mass of the charged pion, Qmin = (s — m,zr) /2p is the minimum momentum
transfer for given s and beam momentum p. F2(Q?) is the form factor of the target nucleus with
charge Z. Itis F2(0Q?) ~ Z* when Q% < 1073 GeV?/c? and in addition s is sufficiently small, such
that the longitudinal compontent Oy, given in size approximately by Qni, is negligible. For the
first process of interest, the final-state X~ is again 7~y such that the involved subprocess is pion
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Figure 1: Visualization of the Primakoff Compton process: A high-energetic pion scatters in the electric
field of a nucleus. For the magnetic contribution, it is to be realized that the nucleus passing the pion at high
velocity represents an electric current inducing a magnetic field at the position of the pion.

Compton scattering £~y — 7~ ¥. The respective cross-section reads

dogy  O*(s*2 +mpz?)  oml (s—m3)?
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where z+ = 1 £ cos 8., and 6, is the scattering angle in the 7~y center-of-momentum system,
and the pion structure enters through the electric and magnetic polarisabilities &; and ;. In the
following, the sum a,; + B, which is expected to be small, and also the influence of the quadrupole
polarisabilities o and B, is neglected. Then, the relative effect of the polarisability a; = —f; on
the cross-section, Eq. 2.1, integrated in the small-momentum transfer region Q? < 1073 GeV?/c?
and depending only on the fraction of energy transfered from the incoming pion beam to the emitted
photon, xy = Ey/Epeqm, can be simplified into

c 3 omd x
R— OW) o 3mm % 2.3)
Oay—0(Xy) 2 a l-xy

This relation is used to extract the polarisability from the measurement of the photon energy spec-
trum in the the Primakoff process 7~ Z — 7~ 7y Z on a nucleus with charge Z, as it has been done
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Figure 2: Layout of the COMPASS setup for hadron beam as used in the beam times of 2008 and 2009. A
detailed description of the employed detectors is found e.g. in Reference [17]. The spectrometer magnets
SM1 and SM2, surrounded by tracking detectors and followed by the calorimeters, constitute the two stages
of the setup.

in the first measurement of this kind at Serpukhov [3].

3. Pion polarisability measurement at COMPASS

The COMPASS experiment deploys secondary hadron and tertiary muon beams from the
CERN 450 GeV super proton synchrotron (SPS). Its multi-purpose detector concept allows for
a wide range of investigations in hadron physics, with high-precision and high-rate capable track-
ing, particle identification and calorimetry in both stages of the magnetic spectrometer. The layout
of the setup is shown in Fig. 2. The two stages are optimized for low and high momentum particles,
respectively, and allow a momentum determination of better than 1% in a wide range, from about
1 GeV up to the beam momentum in the range of 200 GeV.

The measurement of the pion polarisability has been one of the original goals of the proposal
for the COMPASS experiment. After a pilot run in the year 2004, the data presented in the follow-
ing have been collected in a two-week beam time in 2009, with significant improvements in the
calorimetry and the trigger system which based on the detailed analysis of the 2004 data. One of the
conclusions along with preparing the data taking in 2009 [4] was that lead is not a favorable target
material despite the high nuclear charge Z, since the radiative corrections due to multiple photon
exchange and screening are large and represent a non-negligible source of systematic uncertainty.
Consequently, the measurement was performed with a 4 mm thick nickel disk as nuclear target.
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Figure 3: Energy balance of the reaction 7~ Ni — 7~ ¥ Ni (top left), background fraction (top right), and
momentum transfer spectra in ¢> and |Q| (bottom left and right, respectively) compared to those of the
U~ Ni — u~ v Ni control measurements. The cuts applied to the data are indicated as vertical dashed lines.

The 190 GeV negative-charge secondary hadron beam from the SPS contains more than 97%
pions, which are distinguished from kaons by Cherenkov detectors. A unique feature of the pion
polarisability measurement at COMPASS is that the beam can be switched, within less than an
hour, from hadron to muon beam, and the spectrometer is specialized to muon identification due
to the broad physics program with muon beams. For the polarisability measurement, this allows
for control measurements with muon beam, for which the theoretical expectation of the relevant
bremsstrahlung process (= Ni— =7 Ni is completely determined by quantum electrodynamics
(QED).

Reactions of the type 7~ Ni — 7~y Ni are selected by requiring the measurement of one
negatively-charged scattered particle trajectory, that forms with the incoming pion trajectory a ver-
tex consistent with an interaction in the nickel target, and a high-energetic shower in the elec-
tromagnetic calorimeter (ECAL), by which energy and momentum direction of the emitted pho-
ton can be reconstructed. Exclusive reactions are selected by energy conservation in the process
7~ Ni — m~ 7 Ni as depicted in Fig. 3, the upper-left graph showing the peak attributed to exclusive
events in AE = Epeyy — Ex — Ey = 0, neglecting the (tiny) nuclear recoil energy. The width of the
peak o ~ 2.6 GeV is well in agreement with the simulation, reflecting mainly the resolution of the
ECAL. The pion data show a non-exclusive background contribution, visible as a tail at negative
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values of AE. Those stem from diffractive processes, mainly those with neutral pions in the final
state, leading to a very similar ECAL response as the intended single-photon events. Their contri-
bution is not included in the simulation, instead it is estimated from events with identified 7°. The
result is a fraction of about 5%, slightly depending on the photon energy (top-right graph in Fig. 3),
and is subtracted in the further analysis steps. The muon data do not feature such diffractive con-
tributions. Their exclusivity peak is in full agreement with the simulation, and has a similar width
as that of the pion data.

Photon exchange is identified by the strong increase of interaction probability at extremely
small momentum transfer, as given by the quasi-real photon density term of Eq. 2.1. This “Pri-
makoff peak” enters in the usual ¢ distribution, shown in the bottom-left graph of Fig. 3, only in
the very first bin. Its details are better displayed in the variable |Q| = |G| shown in the bottom-right
graph. The peak position as given by Eq. 2.1 would be around 1 MeV/c, however in the data it is
smeared with the experimental resolution of about 10 MeV/c. On the scale of the incoming beam
momentum of 190 GeV/c, this is an excellent value steming from an angular resolution for the
photon and the scattered pion with respect to the incoming pion direction of about 30 prad. This is
reached by determining the position of the electromagnetic showers of the photons in the ECAL,
about 32 m downstream of the target, with a spatial resolution of 1.2 mm, and the track of the scat-
tered pion with a spatial resolution of about 10 um in the microstrip silicon detectors employed
about 0.5 m downstream of the target. These features of the |Q| distribution are also well described
by the simulation, which fully matches in the muon case and lacks the salient additional pattern
due to diffractive processes in the pion case. Photon exchange is selected by the cut indicated in
the |Q| distribution.

For the determination of the polarisability, the photon energy spectrum is examined according
to Eq. 2.3. In the case of muon beam, the shape of the distribution is in excellent agreement with
the simulation as shown in the upper graphs of Fig. 4. The size of the “false polarisability” signal,
in agreement with zero within the fit uncertainty, of +0.6-10~* fm? is taken as an estimate for
apparative imperfections not described by the simulation, e.g. concerning the tracking.

In the case of pion beam, the experimental spectrum has been corrected for the background
estimation shown in Fig. 3, and is divided by the simulation, in which the bremsstrahlung cross-
section for a pointlike spin-0 boson has been taken. The result of this procedure is shown in the
lower graphs of Fig. 4. By fitting the distribution according to Eq. 2.3, the pion polarisability is
determined from the COMPASS 2009 data to be oz = (1.9 4£0.744) - 1074 fm?.

Radiative corrections have been applied on the level of the simulation event-wise, starting
from the published calculations [5, 6] for the case of pion and muon Compton scattering, respec-
tively, and extrapolating to the Primakoff kinematics at Q> # 0. The small difference between the
corrections for pion and muon stem from their spin-0 and spin—% nature, respectively. The error
involved in the approximation 0?% ~ 0 has been shown to be below 10% of the correction itself [4]
and thus negligible. Along with the uncertainty of the vacuum polarisation and multiple-photon
exchange corrections, the uncertainty of the radiative corrections to the determination of the pion
polarisability has been estimated to be about +0.3 - 10~* fm?>, and this value is included in the list
of systematic uncertainties in Tab. 1.

An additional background contained in the data stems from scattering of the beam particles
off the electrons in the target. Since the recoiling electrons may lose practically all their energy by
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Figure 4: Control measurement with muons pt~ Ni — pt~ 7 Ni (top) and determination of the pion polaris-
ability through the process 7~ Ni — 7~ ¥ Ni (bottom).

source of systematic uncertainty

estimated magnitude

tracking 0.6
radiative corrections 0.3
background subtraction in Q 0.4
pion-electron scattering 0.2
quadratic sum 0.8

Table 1: Systematic uncertainty estimates for the pion polarisability measurement (on 68% confidence

level).

bremsstrahlung, this leads to a signature very similar to the intended process of photon emission
when scattering off the nulcei. The contribution of this process has been investigated, and its impact

on the polarisability determination included as systematic uncertainty in Tab. 1.

Summing all discussed systematic uncertainty contributions as summarized in Tab. 1, leads to
a total of £0.8-10~* fm>. So, the preliminary COMPASS result for the pion polarisability from

the 2009 data is

oz = (1.940. 744 +0.85) - 10~ fm?.

(3.1)
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Figure 5: Electromagnetic radiative corrections for muon and pion Compton scattering. Examplarily, the
Feynman graphs for the virtual corrections in the muon are shown (top part of the figure). For the pion,
there are more graphs due to the additional point-couplings in case of a spin-0 particle [5]. The lower graphs
(from [5, 6]) show the radiative corrections, to be employed as multiplicative factor to the non-radiative
process, for different CM-energies in the region of interest for the pion polarisability measurement.

4. Discussion of the pion polarisability result

The presented preliminary COMPASS value for the pion polarisability is compared to previous
experimental results in Fig. 6. Historically (left graph) the first result obtained at Serpukhov [3]
had been confirmed much later by the dedicated experiment on radiative pion photoproduction
at MAMI [7]. In the mean time, the available data on yy — @77~ at e e™-colliders were re-
interpreted by several authors [8, 9, 10, 11] claiming very different values for the pion polarisability,
inspired by the assumptions on pion dynamics and the related low-energy constants that enter in this
interpretation. Later on, it has been proven that there is no conflict between ChPT and dispersion
theory [12, 13].

In that regard, the COMPASS result is in significant tension with the earlier experimental
determinations of the pion polarisability, as the ideogram representation in Fig. 6 (right) shows,
where only the dedicated experiments for the pion polarisability are included. Instead, the new
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Figure 6: Placement of the preliminary COMPASS result on the pion polarisability in the world data (left)
and the ideogram in “PDG style” [15] (right). Plots are from [16], where also a full discussion of the
experimental data is found. The symbol GIS06 refers to the theoretical prediction as given in Reference [14].

result is found in good agreement with the expectation of chiral perturbation theory [14].

In view of the small value obtained for the pion polarisability in this analysis, it is of high
interest what the data taken in the year 2012 at COMPASS with a very similar setup as described
here will show. For this data set, the statistical uncertainty is expected to be a factor of three smaller
and the polarisability signature of Fig. 4 accordingly clearer. This data set will also allow the
extraction of a; and 3, independently, as well as the determination of the quadrupole polarisability
o — B. In addition, the first value for the kaon polarisability is in reach, using the identified kaon
component of the beam and employing the same analysis technique as for the pion.

5. Chiral dynamics in Primakoff pion production processes

Along with refining the analysis described above, further processes on chiral dynamics in reach
with the same COMPASS data were investigated [2]. Since long, the chiral anomaly in the process
n~y — m~x° is of interest, however the analysis of this channel is still underway.

The detailed study of two-pion production at low energy is also not yet finished for the neutral-
pion case 7~y — 7", For the charged case 7~y — n~ 7~ ", however, the analysis [17] of
the data from the pilot run in the year 2004 has been completed, and is discussed in the following
subsection.

5.1 7~y — m~n 7" process at low final-state mass

The three charged-pion final state mass spectrum obtained in Primakoff kinematics off lead
nuclei is shown in Fig. 7. While the region above about 1 GeV exhibits the usual shape including
three-pion resonances discussed in the next subsection, the low-mass tail is of specific interest in
terms of chiral dynamics: Since the tails of known resonances play only a minor role, and the
relative pion momenta are low, the kinematics lies in the region where ChPT is applicable. ChPT
provides predictions for the absolute cross section to leading [4] and next-to-leading [19] order.
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Figure 7: Mass spectrum for the reaction 7~ Pb — -7~ " Pb in the Primakoff region Q> = ¢ <
0.001 GeV?/c?. Events from the decay of the kaons in the incident beam are seen as a peak at m3; = mg— ~
0.49 GeV?/c?. The region of interest for chiral dynamics up to ms; = Smy ~ 0.72 GeV?/c? is highlighted in
grey.

In order to compare on the absolute level, a flux normalization for the data has to be determined.
Here, the kaon component of the hadron beam is used, since some of the kaons decay in the free
space around the target with well-known branching into the same three-pion final state as under
study here, also with small (rather vanishing) momentum transfer. Dividing by the fraction of
kaons to pions in the beam, the effective flux of pions is deduced from the observed kaon decays.
Measuring the same final state, it features obviously a similar reconstruction efficiency, that has to
be propagated to the full mass spectrum of interest only moderately by the Monte Carlo simulation
of the setup.

The result is published in [18]. The absolute cross-section has been determined in five bins of
the final-state mass from threshold at 3m, up to 5my. The data agree with the expectation from
tree-level ChPT on the level of the experimental uncertainty of 20%. This confirms, on the one
hand, the extension of the ChPT approach for processes involving the coupling of four pions, i.e.
the leading order, to processes involving the additional coupling to a photon. On the other hand, it
demonstrates that the Primakoff technique in the form of Eq. 2.1 can be safely employed. In terms
of studying ChPT, the neutral channel 7~y — 7~ 7’2" will be of higher relevance, since for this
channel higher-order loop corrections are expected to play a larger role [19].

For determining the ChPT intensity present in the mass range of interest, it has been fitted to
the data in its fully (5D) differential form employing the partial-wave analysis techniques as devel-
oped and used for extracting contributions from resonances with specific J*¢ quantum numbers as
discussed in the following.

5.2 Radiative coupling of resonancesin 7~y — 1~ 7 7"

The invariant-mass spectrum obtained for the final state 7~ 7~ 7" from pions scattering off

10
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Figure 8: Result of the partial-wave analysis of the data shown in Fig. 7 for the a; with M = 0 and a,
with M = 1 components. The PWA in mass bins for the low-' region is shown in the left column for the
17t0%pxS and the 27717 paD waves, together with their relative phase calculated from the interference
term. In the right column, the PWA is performed in ¢’ bins for a broader mass bin covering the main part of
the a, resonance. The relative phase between the two resonances (lowest-right plot) shifts from about —110°
to 0°, indicating the transition from electromagnetic to strong production of the a, resonance. For further
details, see text.
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lead nuclei at very low momentum transfer ¢ < 0.001 GeV?/c? is shown in Fig. 7. It features the
salient structures from the well-known resonances a;(1260), a;(1320) and m,(1670). For under-
standing their quantum numbers and the involved production mechanisms, a partial-wave analysis
is performed.

It is assumed that the intermediate states, into which the incoming pion is excited through the
interaction, are mesonic resonances with well-defined quantum numbers J”C, determined by spin
J, parity P and charge-conjugation parity C (in case of charged resonances, the C-parity of the
neutral partner in their constituent-quark multiplett). In addition, two more quantum numbers are
specified, the spin projection M of J onto the incoming-particle axis (in the CM of the resonance),
and the reflectivity € of the transition. The latter expresses, using the parity of the incoming and
outgoing system and the involved orbital angular momentum, whether the exchange particle has
natural (J¥ = 0%,17,2%,... e.g. Pomeron, photon) or unnatural (0, 17,27, ... e.g. pion) quantum
numbers.

Next, it is assumed that the decay of the resonance R into the observed three pions goes through
some isobar configuration, such that the decay proceeds in fact in two steps of two-body decays.
In the first step, the resonance decays into a bachelor pion and a two-pion isobar resonance r, i.e.
R — mr, where r, for the mass range of interest, is typically a p(770) or an f>(1270). In the second
step, the isobar decays into two pions, » — 7. A specific spin configuration in such a resonance
decay is thus given by JP*M¢rnL, where L determines the orbital angular momentum between r
and the bachelor 7 in the first decay step.

All such excitations to existing resonances that decay into three pions, give rise to an amplitude
that contributes to the total transition probability. It is obtained by squaring the total amplitude, to
which the single amplitudes sum up.

The key feature of PWA is that due to their quantum numbers, the contributing resonance de-
cays have different angular patterns in the 5-dimensional decay volume. The correlations between
the variables is sufficiently high, such that even with a limited knowledge of the three-pion dis-
tribution, the contributing amplitudes can be deduced without ambiguity. Additionally, due to the
squaring of the amplitude sum, the interference terms emerge with also specific angular signature
in the three-pion distribution.

The interference terms are useful in a two-fold way: First, they can serve to identify small-
resonance contributions. If an amplitude is small with respect to another, overlapping contribution,
then the interference term is possibly much larger and can be identified already at lower statistics.
Secondly, at this point it becomes relevant that a resonance is described on the quantum-mechanical
level by a complex phase, running from O (on the low-energetic side of the resonance) through 7
(on top of the resonance) and approaching 27 when the exciting energy is much higher than the
resonance energy. This phase determines the size and the sign of the interference term, or in turn,
from knowing the interference term, the phase motion can be concluded.

The result of the PWA decomposition of the low-t’ data taking with a 190 GeV pion beam
on lead is shown in Fig. 8 for the a; and a, resonances. The appearence of the a, resonance at
small ¢’ is special in two ways: First, in strong production via Pomeron exchange the expected
t" dependence is ¢’ exp(—bt') with b =~ 400(GeV/c)~2[18], in contrast to the observed peak at
smallest values. This indicates that the resonance is not produced via the strong interaction, but
rather by photon exchange following 2.1, which also approaches 0 as ' — 0, however on the
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unobservably small scale of the peak structure in the range of 10~° GeV?/c?. Secondly, the data
allow for determining the phase between the two resonances as explained above, and by this the
change of production mechanism for the a, from electromagnetic to strong production becomes
explicit: While the difference between the (real) production of the a; via photon exchange and the
(imaginary) production of the a; via Pomeron exchange leads to the phase difference in the range
of —90° for smallest momentum transfers, this difference vanishes at higher momentum transfer,
when both production mechanisms turn to strong interaction.

Having ensured that the a; is produced via £y coupling, the measurement of the absolute cross-
section for this process allows the determination of the radiative coupling of the resonance. The
required normalization is obtained analogously to the procedure described above, using the Monte
Carlo simulation in order to extrapolate the acceptance from the kaon mass to the resonance mass.
This analysis is momentarily being finalized. COMPASS has observed with the same method the
radiative coupling of the @, resonance, and further constraints on radiative couplings of mesonic
resonances are in reach.

6. Summary

In summary, several reactions for testing the chiral dynamics, that are accessible with the
COMPASS experiment at CERN, have been discussed. The measurement of the pion polarisability
reveals a value in agreement with the prediction of ChPT, and in contradiction to previous measure-
ments. In the process w7y — 37, chiral dynamics at low relative momenta could be observed. At
higher energies, it was demonstrated that COMPASS can determine radiative couplings of meson
resonances with unprecedented precision.
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