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We report on recent work [1, 2] concerning isospin breakimghie K4 form factors induced
by the difference between charged and neutral pion masdesting from suitably subtracted
dispersion representations, the form factors can be aaristt in an iterative way up to two loops
in the low-energy expansion by implementing analyticityessing, and unitarity due to two-
meson intermediate states. This provides a connectiorgeatthe phases of the two-loop form
factors of theK* — " e*ve channel measured experimentally (out of the isospin liamit)
the difference ofs- andP-wave rrr phase shifts studied theoretically (in the isospin limithe
isospin-breaking correction consists of the sum of a usalgrart, involving onlytrirrescattering,
and a process-dependent contribution, involving the faotdrs in the coupled channels. The
dependence on the tw&wave scattering Iengthsg anda% in the isospin limit is worked out
in a general way, in contrast to previous analyses based e#oop chiral perturbation theory.
The two-loop universal and process-dependent contribsitie estimated and cancel partially to
yield an isospin-breaking correction close to the one-lcage. The recent results on the phases
of K* — mtm et v, form factors obtained by the NA48/2 collaboration at the CESPS are
reanalysed including this isospin-breaking correctioextract values for the scattering lengths
ag anda%, as well as for low-energy constants and order parameteveosflavour x PT.
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1. Introduction

One of the best tests of our understanding of low-energy Q@&bes fromrtrt scattering, as it
probes the spontaneous breaking of chiral symmetry, radiglerfor the existence of light pions as
Goldstone Bosons. It provides a very stringent tedtjof 2 Chiral Perturbation TheoryPT), the
effective theory for low-energy pion dynamics built on thréral limit m, = myq = 0, of its structure
and of its range of validity [3, 4]. A particularly clean pmlof 7T (re)scattering consists in the
angular analysis dk — /v (Ky4) decays, yielding information on the interference betwien
SandP waves [5]. Dispersive methods, i.e. Roy equations, canlikarsed to reconstruct the low-
energyrrt amplitude using unitarity, analyticity, and data at higbeergies, with two subtraction
parameters chosen as the scattering leng¢hand a3 [6]. The reconstructed amplitude can be
checked against the prediction fromy = 2 xPT. In order to match higher-energy data am
phase shifts, Roy equations require the valueggfa3) to lie within a large so-called Universal
Band, out of which the domain favoured RYT represents only a small region.

Until 2001, the only available data dfy4 decay into two charged pions came from the old
Geneva-Saclay and more recent BNL-E865 experiments [7]rsfdinalysis using the Roy equa-
tions together with a theoretical estimate of the scalaiusadf the pion led to a determination of
the scattering lengths in close agreement with the predistirom two-loopxPT [8]. Another
analysis of the data available at that time (including 2 low-energy phase shifts) favoured a
slightly larger value foe%, 1 o away from the two-loog(PT prediction [9]. Recently, the NA48/2
collaboration has collected high-statistkégl data at the CERN SPS [10]. After the announcement
of the preliminary results of NA48/2 [11], it was pointed @&t the high level of accuracy reached
by the experiments in extracting thiet phase shifts required taking into account isospin-brepkin
effects [12]. These effects stem from different sourcessthe contributions from real and virtual
photons can be removed, estimating the Coulomb exchanges@rporating radiative processes
through a Monte-Carlo treatment [13]. Second, the effethefmass difference between charged
and neutral pions on the one hand, which is also dominantjectromagnetic origin, and between
up anddownquarks on the other hand, must be determined from a thealratialysis.

These remaining corrections will be called "isospin-biegkfor simplicity, being understood
that the other photon effects mentioned above have been talte of beforehand by appropriate
means, or can otherwise be considered to be negligible. Apatation of these corrections was
performed using next-to-leading-ordePT [14], leading to a significant energy-dependent correc-
tion in the phase shifts, restoring the agreement betweeiNA®8/2 results and two-loogPT.
However, this correction was evaluated in the framework BT, with a given set of counterterms
with values corresponding to a rather narrow range of srd:agdengthsag anda%. The underlying
assumption is that the correction remains the same everafoew of(a3,a3) that are reasonable
from the dispersive point of view, i.e. consistent with Rayations and higher-energy data, but
cannot be accommodated from the chiral point of view, bezdhbsy differ too much from the
current-algebra results. If the correction had a strongdéence or$ anda3, the latter would not
be exhibited by the one-loop computation performed in taenéwork ofyPT, but it could affect
the outcome of the analysis of the data provided by the NAég{izriment.

We report here on a dispersive computational framework agpm-breaking corrections in
the phases of the form factors where the values of the sicafteengths are not unnecessarily
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restricted from the outset, recently developed in Ref{2]and overcoming this potential issue. In
presence of isospin breaking, severalchannels can rescatter into a given final state, contrigutin
to isospin-breaking effects in direct link with the strugtwof the rrr amplitude itself. As shown

in Refs. [15, 16] in the isospin lim#, the use of analyticity, unitarity and crossing is suffitien
reconstruct therrr amplitude up to two loops in terms of a limited number of satition constants
(subthreshold or threshold parameters). Refs. [1, 2] hed e same approach to derive a general
expression for the isospin-breaking correction in the pea¥ the two-loop form factors, where
the values o8 andaZ remain as free parameters and are not fixed from the outsetRefi[14].

2. Properties of the Ky4 form factors

Crossing.In the Standard Model, the amplitudes corresponding iaecays are defined from
the matrix elements of the typer(pa) °(pp) iA7,'5(0)|K (k)) involving theAS= AQ = +1 axial
current. Through crossing, this amplitudes can be relale(dﬁ(pa)l<_(k)|iAf,‘i5(O)|ﬁb(pb)> and
(K (k)°(pp) [iIAf~>(0)|TP(pa)), which can be all treated with common notation:

dﬁb( Pa, Po; Pc) = (@(Pa) b(Po)|iAL(0)|C(pc))- (2.1)

In practice the sets of interest afa,b,c} = {m", m K}, {n®, 0, K~} or {r®, 71 ,K®}. This
matrix element possesses the general decomposition wadant form factors

JZ{/jlb(pa'ta Pb; Pc) = (Pa+ pb)IlFab(S7t7 u) + (Pa— pb)IlGab(Svtv u) + (Pc— Pa— pb)IlRab(S’tv u).
(2.2)

They depend on the variables= (py+ pp)?, t = (pc — Pa)?, U= (pc — Pb)?, Obeying the “mass-
shell” conditions+t +u = M2 +M2+M2+s = 5, with s, = (pc — pa— Po)? being the square
of the dilepton invariant mass. The decomposition (2.2)de@a form factors which are free from
kinematical singularities, but which do not have simpleatepositions into partial waves. For
the latter, it is more convenient to introduce another sefooh factors.Z20,«¢a0 7730 which
are linear combinations of the former, with projections mom partial waves denote(ﬂ,ab(s,s),
g;”‘b(s,s), rf"b(s,s). It turns out that crossing provides relations amoA@nd¥-type form factors
on one side, and among-type form factors on the other hané (form factors are linked to the
divergence of the matrix elements of the curr@ptx), so that they cannot mix under crossing with
the other form factors, related to transverse componeriteea§ame current).

Chiral counting. The low-energy behaviour of the partial waves [17] is basedhe chiral
countingMp ~ @(E), s,t,u,s, ~ ¢(E?), whereMp stands for the mass of any of the light pseu-
doscalar statessandP waves are dominant at low energies:

Refg®, Reff®, Reg® ~ 0(E?)),  ImfE®, Imf® Imgd® ~ O(E?),
Ref?,(s.s0), Regf?,(s.s0) ~ O(E?), Imf2(s,s), IMg2,(s,s) ~ O(E®). (2.3)

The chiral counting of the partial waves translates intoddkeeompositions
F(st,u) = F&%s,s,) + FE°(s,5) cosap + F22(s, COSBap, &),
G*(st,u) = GB(s,s7) + G2(s,c086ap, ). (2.4)

1The isospin limit is defined as the limit in which the valuestw neutral pion and kaon masses tend towards the
charged onesdyl, o — M=, Mo — M=, while keeping the latter fixed.
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where 6,5, denotes the angle made by the line of flight of partele the (a,b) rest frame with
the direction off; + Py in the rest frame of particle, The contributions of > 2 partial waves are
collected inF2P and inG2®, with the counting RE2°, ReG2° ~ ¢(E?) and InF2°, ImG2° ~ ¢ (ES),
while SandP waves are collected in

MZ _ MZ

aTbgi‘b(s,sZ),
1

M2 —s—s AZ(S)

. A%()gi‘b(s,&), GR(ss) =08°(ss).  (2.5)
ch

FSab(Svsf) = f(?b(svsf) -

ng(S,Sg) - ffb(S,Sg) -

involving the Kallen's functiom (x,y, z) = X2 +y?+ 2% — 2xy— 2xz— 2yzwith Aap(s) = A (5, M2, M?)
andAx(s) = A (s, s,M2),

Analyticity. The form factorg=2°(s,t,u) andG®®(s,t,u) are assumed to have the usual analyt-
icity properties with respect to the variatdgfor fixed values ot and ofu (and ofs, > 0), with
a cut on the positive-axis (fixed by unitarity) and a cut on the negatsaxis (unitarity in the
crossed channel). Up to and including two loops, the discoities along the positive-axis at
low energies (at a fixegh) originate from mesonic two-particle intermediate states

A%; /- ; *
miPss) = 5 2 Re i@ [ (s8]} 6(s-s) +0EY,  @6)
{apy @
A2 (s) A2 . . .
Imgi”‘b(s,sg) _ 1 ab’(s) alb’(s) Re{tlab’,ab(s) [giab (S,Sg)] }G(S—Sdb/) —{—ﬁ(EB),

@B 7y S )z

wherel = 0,1 andsyy = (My 4+ My)? stands for the lowest invariant mass squared of the corre-
sponding intermediate state. The symmetry factor redgs = 1 except for{a’,b'} = {n°®, n°}

or {n,n}, where %y = 2. The partial wavesqa'b’;ab(s) of the mesonic scattering amplitudes
AP35 £ £ = (py— py)?, are defined as usual with the chiral counting [15]

Ret?®®(s) ~ 6(E?), 1 =0,1, Ret?"®(s)~ O(E*), | > 2,
Imtla/b’;ab(s) ~ ﬁ(E‘l)’ | =0,1, Imtlalb’;ab(s) -~ ﬁ(EB), | > 2. 2.7)
An important observation is that the scattering amplitustest at least at- ¢’(E?), so that the

unitarity condition requires the imaginary part of the fofiawtors to arise one higher order (in the
chiral counting) compared to their real part.

3. Phases of theform factors

We are eventually interested in the phases offgdp, andGp components of th& andG
form factors corresponding to the decay charngiel— (" v, as defined in Eq. (2.5) and more
precisely, in the differences of these phases that areaiderin the interferences occurring in the
differential decay distribution. These form factors hdve generic low-energy structure

Fr(st,u) = Fd(55)8%5% 1 Ry (s,5)e%%) cosh + ReF. (s cos,s) + O (ES),
G(sit,u) = Gp (5,5)€%%) 1 ReG! (s,cos0,5) + O(E®), (3.1)
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Figure 1: KZ, form factors: tree-level representation (left) and typieacattering diagrams involved in the
reconstruction of th&g, form factors in thes-channel (center) and in tleandu-channels (right).

where the real functio@*(s,&), Fs(s,s), andG; (s,s) correspond to the quantities appearing
in Eq. (2.4), but with their phases removéd; (s,s,) = e 'S(%)F; (s +i0,5), etc. Order by
order, the phases are related to the chiral expansion oé#igarts of the partial-wave projections

Ret® (s) = ¢77" () + 4" (9) + O(EP), (3.2)

for | = 0,1, with the shorthand notatios — denotingrr" m. We haveqbab " (s) ~ O(E?) and
Lpab " (s) ~ O(E*). We write a similar expansion for the form factors themsg|eg.

ReFg (s.5) =Fdg +Fgy(s %)+ O(EY),  ReGh (s) = Gppg +Gpyy (s,5) + I (E?), (3.3)

Using the unitarity condition Eq. (2.7), we obtain the exgsiens valid up ta’(E®) corrections

1 / /1
1 AQI s - Fab( Fab(S,Sg) - Fab
oy e [¢3”’+<s> 97 e AC R LICRL TR CR)
{@h) v FsotFsz(Ss S0
1 1 / a
Ay (s) A2, (S) G%[%] +Ga[ ](37 ) At G [%(]

=3 =2 o [¢f,b/;+() 20 (g) 6o, 0(s— Swp )+ .(3.5)

@ry S AZ(9)

Crg + Cri (S ) PO
The phases(s,s/) and dp(s,s;) depend ors, through the order’(E?) corrections to the form
factors, as soon as a second intermediate sthtet +— is involved. In the case of thB-wave
phase shift, there can be no contribution from states withitlgntical particles due to Bose sym-
metry. Hence, fobdp in the specific casab= +— and fors < Mﬁ, the sum boils down to the single
mh i intermediate state, the contribution from form factorspdrout altogether and there is g0
dependence. While Watson’s theorem does not apply tddtgs,) phase shift due to the occur-
rence of two distinct possible intermediate sta@sf and " r~ for s< MZ], it is still operative

in thel = 1 channel. This explains both why the phase&gik, s/) and ofGp(s,sy) are identical,
and why this common phag®(s) actually does not depend @n as indicated in Eq. (3.1).

4. Two-loop representation of Ky4 form factors

One can derive a representation of &g form factorsF2°(s,s;) and G3(s,s;) that holds
up to and including two loops in the low-energy expansiomcpeding as in the case of timet
amplitude in Ref. [15], or as discussed for the scalar foratofaof the pion in Ref. [18] (in the
isospin limit) and in Ref. [1] (with isospin breaking incled). As compared to the latter case, one
has to deal with some additional kinematic complexities nvhedressing th&, form factors.
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projection
over partial waves unitarity dispersion relation

@—’—' f at order E%* I—’—l Im f at order E¢+2 I—’—' A at order E2F+2

A A 4

Figure 2: Recursive construction for two-loop representations efKf, form factors andrr scattering
amplitudes in the low-energy regim&.denotes the amplitude of interest ahds partial waves.

As a starting point, we consider fixédlispersion relations with two subtractions for all form
factors, in all three channels. Assuming the usual an#@lyticoperties for the form factors, with a
first cut extending to infinity along part of the real positsvaxis, and a similar second cut along the
real negatives-axis, due to the-channel singularities, we obtain the following dispensielations

Fab(s,t 1
A(st) = (Gabgs t§> = P¥®(t|s,u) + = / v mlmAab(x,t)

— / N AvETIT, a)\C%USImACb(x t). (4.1)

where A, and é,s are phases and matrix implementing the expected strucfuileed<,4 form
factors undeu-crossing, and?°(t|s, u) denotes a pair of subtraction functions that are polynanial
of the first degree s andu, with coefficients given by arbitrary functions bf We may express
ImA2® in terms of the imaginary parts of the form factdig’(s), F5°(s) andgi®, and exploit the
chiral counting to absorb parts of the dispersive integrate (yet unspecified) functiori22®

A®(st,u) = Pa(s t,u) + [q:fb(s) (- u)cpf‘b(s)] FAAL s [cpfb(u) ~ (t—9)®(u)
+ ApAcCat [D(t) — (s— U)D(t)] 4 O(EP). (4.2)

where the functionsp, and®_ are defined through their analyticity properties in the clem-
plane: their singularities are restricted to a cut alongpibstive real axis, and their discontinuities
along this cut are linear combinations of 1g(s), Imf2°(s) and Ing2®(s). Crossing relations can
be used to show th&?®(s; t, u) is a pair of polynomials of at most second order in all thredatdes

s, t, andu, with arbitrary constant coefficients (which may dependr@rhasses and ).

The low-energy discontinuities are limited to two-mesoeimediate states [cf. examples of
typical diagrams at one loop shown in Fig. 1] up to and ineigdiwo-loop order. This provides
an iterative set-up to construct tig, form factors at two loops through a two-step process, as
illustrated schematically in Fig. 2. The starting point ieyaded by the form factors and ampli-
tudes at lowest order. Since these are given by at most fiet polynomials in the corresponding
Lorentz invariant kinematical variables, the computatibthe lowest partial waves required for the
one-loop discontinuities is a simple exercise. Likewisa]ifig the appropriate explicit representa-
tion of the one-loop functions with the prescribed disaomties presents no particular difficulties.
Things become less tractable at the second iteration, whiphires the partial-wave projections of
the one-loop form factors and scattering amplitudes. Réfiged this approach both for the vector
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and scalar form factors of the pion, as well as for tirescattering amplitude¢ and ¢/, whereas
the case oKy4 form factors has been discussed in ref. [2].

5. I'sospin breaking in the phases of the two-loop form factors

Since the low-energyrrt scattering amplitudes play a central role in this discugsige sim-
plify the notation, so that quantities related to the pregesm — mrm (m°n® — n°n°) will be
distinguished by a+— (00) superscript or subscript, e.@; (S) = ¢, " (s). For the inelastic
channelr* m~ — m°n®, we use the superscript/subscripso thatpX(s) = 9o *(s), for instance.
The general formulas (3.4) and (3.5) read, fot?4< s < (Mg — my)?,

55(s.8) ~&(s) = 0(8){ |95~ (9~ B0 (9)] + [ws (99— P (9)
——[450 )— 83 (9) }——{% )— &3 (9 ]}
2 [09) - (1+2v/3e2)00(9)] [95(9) + wi(S)

~a0(9)85(9) [(1+2V3e)fg (s5)— 13| + €Y, (5.1)
3(s)—~ 8u(s) = a(9){ | ¢ (9~ $1 (9| + [wi (9- i (9]} +0(E). (52

_|_

1 1
The phase-space factors for two charged or two neutral @oma 2 (s) = so(s), andAZ(s) =

sop(s), and for any quantityA, ,& denotes its counterpart in the isospin limit. We have used
F°° /F** = —(142V/3¢,) (&2 being related tam mixing), and denoteﬁg[z]( &)= S[O] o (s,s)
andFSO[g]( s) = —Fgg - fo (s,5), s0 thatfg andfs combineF - andG-form factor partial waves.

In agreement with Ref. [1], isospin-breaking effects takace in theSwave phase shift
through two types of contributions: the first two lines in E8}1) are universal as they depend only
on 717t (re)scattering, whereas the last two are process-depeadéehey involve isospin-breaking
in theKy4 form factors. For the third term, this dependence is not pficixas for the last one, but
one should recall that the facter(1+ 21/3¢,) originates from the ratu’E00 /F** On the other
hand, isospin breaking in tHe-wave phase shift Eq. (5.2) is indeed unlversal In ordeetate
the data fromKZ; decays to thetr phases shiftgh(s) — d1(s) in the isospin limit, we evaluate
the isospin-breaking correctidig (s,s;) = [ds(S, ) — d(S)] — [Ip(S) — 1(9)] , at next-to-leading
order. This requires the determination of the partial-wargectionsf; (s,s/) andfy(s,s/) of the
K4 form factors and thetrt partial wavespg;(S), ¢4(s), Yg1(S), andyip(s).

The iterative procedure described above allows one to ibestirese quantities in terms of a
large set of subtraction constants not fixed by the geneagegpties (unitarity, analyticity, chiral
counting) on which we have built our approach. Additiondimation must be provided on these
guantities, which is obtained by matching the expressiothefsubtraction constants onxd°T:

a) The quantities related to therr partial-wave projectionsqb&i(s),qbg(s) or (,Ugi(s), Yi(s) can
be expressed in terms of the corresponding threshold pseesnevhich can be related to the two
Swave scatteringag anda(z) in the isospin limit using the results of Ref. [1p) For the other
lowest-order two-meson scattering amplitudes contrilguto the real parts of the form factors
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at one-loop, we have used leading-order expressions frome-flavouryPT 2 ¢) Finally, for the
subtraction constants for th&, form factors, we have matched the dispersive representatfiit
Nt = 3 xPT expressions.

For our numerical analysis, we use the inputs for strong getremagnetic low-energy con-
stants described in Refs. [1, 2]. We assume (as already doRefi [14]) that the low-energy
constants involved in the theory without virtual photone atentical to those in the full theory.
This identification induces a systematic theoretical entoose size is difficult to assess, but which
will be assumed to be small compared to the other sourcesceftamnties. We have variea in
the range [0.18,0.30] amig in the Universal Band obtained from the analysis of Roy dqnat
and the compatibility with high-energy inputs. The maintcilnution toAjg can be seen as com-
ing, on the one hand, from pure phase-space effects whichndtes in the low-energy region,
and on the other hand, from the significant (especially atdrigenergies) universal contribution
and the form-factor dependent one, with opposite signs.nAke case of the scalar and vector
pion form factors [1], the form-factor dependent part tetaldecrease the size of the correction,
and a significant cancellation takes place between the tsaivand non-universal contributions to
isospin breaking in the two-loop phase shifts. The contidins toAg (s, s;) from theP-wave term
are completely universal and very small, in agreement wih R]. At larges, the correction is
reduced compared to the leading-order results, and vagiei§isantly in the(al, a3) plane, as illus-
trated in Fig. 3, which can be compared to Ref. [14]. Goingyafiam s, = 0 does not change the
above picture. The dependence on the dilepton invariant sa@®mes from the partial-wave pro-
jection of the form factorig0 andf§~, but this dependence is very mild: varying over the allowed
phase space @'s; < (Mk+ — 1/S)? change\ (s, ) by less than 1%.

6. Re-analysis of NA48/2 results

We can use our computation of the isospin-breaking cooediig (s,s;) as a function of
the two scattering lengthad and a to perform an analysis of the available phase shifts from
the NA48/2 experiment [10]. We proceed along the lines of. f¥f using the same solutions
of the Roy equations in the isospin limit, and correcting tiveasured phase shifts based on the
interference betweeBandP waves §— P fit). Actually, theSP interference from thK‘jE4 angular
analysis provides a strong correlation betwe@anda%, but a weaker constraint on each of them
separately. We can circumvent this problem by performiregetktended fit described in Ref. [9],
where we supplement the NA48/2 data set with informatiomftbel = 2 Swave? in order to
constrain each of the two scattering lengths more tighitefeded fit). The results of these analyses
are shown in Fig. 3 and summarised in Tab. 1. We perform thiysiasither with or without
isospin-breaking corrections. In the first case, our reagree with the NA48/2 collaboration for
the S-P fit (so-called Model B in Ref. [10]:a8 = 0.2224-0.013 anda3 = —0.043+ 0.009) but
with slightly larger errors once isospin-breaking cori@ts are included. This is not surprising

2This might not look quite at the same level of generality athincase of therrr amplitudes. In some cases, like
for instanceriK scattering, we could have used existing phenomenologifaimation [19]. However, the numerical
weight of all these contributions is quite small, well belthe level of the uncertainties generated by the other terms.

3The isospin-breaking corrections attached to lthe 2 channel cannot be estimated in our framework but are
certainly subleading compared to the large uncertaintiethfs set of data.
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Figure 3: On the left: Isospin breaking in the phase of the two-loopféactors Ajg (s, ), as a function of
the dipion invariant mashl;; = /s, for s, = 0. The middle (light-blue) band corresponds to ta§ a3) =
(0.182 —0.052), whereas the other two cases shown correspo(‘mgtag) = (0.205, —0.055) (upper orange
band) and tc(ag,ag) = (0.24,—0.035) (lower green band). On the right: Results of the fits to the BiR4
data in the(a3,a3) plane. The two black solid lines indicate the universal baere the twoS-wave
scattering lengths comply with dispersive constraints/(&guations) and high-energy datammscattering.
The orange band is the theoretical constraint coming frastalar radius of the pion [8]. The small dark
(purple) ellipse represents the prediction basedNen= 2 xPT [8]. The three other ellipses on the left
represent, in order of increasing sizes, the &llipses corresponding to the scalar (orange ellipse £8P,
(blue ellipse) and extended (green ellipse) fits, respelgtivncluding isospin-breaking corrections. The
light-shaded ellipses on the right represent the same tajtwithout isospin-breaking corrections.

since our isospin-breaking correction varies vﬁgnanda%. Once isospin-breaking corrections are
included, the mild discrepancy previously observed betwhe two fits [9] is recovered, whereas
the larger uncertainty of th&P fit covers both solutions. By comparing the dispersive anchth
descriptions of the low-energgrt amplitude in the isospin limit following Refs. [15, 16, 9],ew
can extract theéNs = 2 chiral low-energy constani&,&, or equivalently the two-flavour quark
condensat& (2) = — limm, m,—.0(0juu|0) and pion decay constaht(2) = limm, m,—o0 Fr measured
in physical units (callec (2) andZ(2)). As shown in Tab. 1, the minor difference a§ between
the two fits yields significant differences in the estimatehefNs = 2 order parameters and low-
energy constants. For comparison, we also show the resqtfi;rved without including the isospin
corrections.

A natural extension of our work would consist in working ot only the phases, but also
the real parts of th&,4 form factors, in order to compute isospin breaking in thegantjties
which are experimentally available. A full analytical treeent seems out of reach, but the outcome
would involve a limited number of one-dimensional dispegsintegrals amenable to a numerical
treatment. For instance, it would provide a theoreticanigaork suitable to analyse the cusp
recently observed by the NA48/2 experimenkifi — m°n°e* ve [20].
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