
P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority
for High Performance Computing Infrastructure

Eisaku Sakane∗, Kento Aida and Kazutaka Motoyama
National Institute of Informatics
E-mail: sakane@nii.ac.jp, aida@nii.ac.jp, motoyama@nii.ac.jp

The production-level operation of the High Performance Computing Infrastructure (HPCI) has
been started from the end of September 2012. HPCI is a distributed supercomputing infrastructure
in Japan. Currently, ten supercomputer sites, including the K computer, and two high performance
shared storage sites organize HPCI. The National Institute of Informatics (NII) is in charge of
operation of the authentication system, which enables single sign-on the supercomputers and the
shared storages in HPCI using the grid security infrastructure (GSI). NII operates the certificate
authority in the authentication system.
Recently, the Internet community strongly recommends using the SHA-2 family as hash algorithm
for digital signature. In the grid community, the International Grid Trust Federation (IGTF) also
has discussed SHA-2 migration, then requests the accredited certificate authorities to issue SHA-
2 based certificates from the autumn of 2013. However, we do not have sufficient experiences
based on practical experiments in nation-wide grid computing infrastructure such as HPCI.
In this paper, we present design and implementation of the certificate authority for HPCI (HPCI
CA). HPCI CA follows the CP/CPS based on the Member Integrated X.509 Credential Services
(MICS) profile, and it issues SHA-256 based certificates for CA itself and all end-entities in
GSI. First, we present an overview of the authentication system in HPCI and the design of the
certificate authority. Then, we discuss the issues for supporting SHA-2 based certificates in im-
plementation of the authentication system focusing on two middleware: the software to build PKI
domain (NAREGI-CA) and the GSI-enabled SSH client software (GSI-SSHTerm). NAREGI-
CA is an open source software for easily building PKI domain. We mention the development
of NAREGI-CA for handling the SHA-2 family. As for GSI-SSHTerm, the NCSA version that
supports jGlobus 2 is adopted. Finally, we discuss the problems recognized after the start of
production-level operation of HPCI. For instance, we illustrate how the problem that the cryp-
tographic handshake between GSI-SSHTerm and GSI-enabled SSH server fails under a certain
condition is resolved. We also briefly present a plan for supporting the Online Certificate Sta-
tus Protocol (OCSP) responder and IPv6 capable end-points, which are used for publishing the
Certificate Revocation List and the OCSP responder.

The International Symposium on Grids and Clouds (ISGC) 2013,
March 17-22, 2013
Academia Sinica, Taipei, Taiwan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:sakane@nii.ac.jp
mailto:aida@nii.ac.jp
mailto:motoyama@nii.ac.jp

P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority. . . Eisaku Sakane

1. Introduction

Recently, with the use increase in distributed computing resources, authentication, authoriza-
tion and secure communication mechanisms become more and more important. Among such mech-
anisms, the public-key infrastructure (PKI) is a major technology and supports secure communi-
cations in the Internet. In general, PKI basically consists of a certificate authority (CA), relying
parties, and certificate users. One of the roles of CA is to issue certificates for end-entities (persons
and network systems). A certificate is composed of a public key held by an end-entity, and a set
of information following X.509 standard [1]. CA signs a certificate; that is, CA computes the mes-
sage digest of the certificate with a hash function, e.g., MD5, SHA-1, and SHA-2, then encodes the
message digest with CA’s private key of a public-key cryptography like the RSA algorithm.

In X.509 certificates, a hash collision between different certificates is serious problem. The
MD5 hash function is already compromised because collision attacks against MD5 exist and are
feasible in realistic time. The SHA-1 hash function is a successor to MD5, however, it is thought
that SHA-1 will be also compromised in the near future for the same reasons as MD5. The National
Institute of Standards and Technology (NIST), US, recommended that SHA-1 would be deprecated
in digital signature after 2011 in SP800-57 [2]. Namely, strong algorithms such as SHA-2 family
(SHA-224, SHA-256, SHA-384 and SHA-512) should be used. In Japan, the CRYPTREC (Cryp-
tography Research and Evaluation Committees) project [3] publicized the e-Government Recom-
mended Ciphers List on February 2003, which is a list of ciphers that should be recommended for
use in the procurement of “e-Government”. In the list updated on March 2013, SHA-1 is restricted
to use for backward compatibility and SHA-2 family is recommended.

The International Grid Trust Federation (IGTF) [4] establishes common policies and guide-
lines for international cooperation in grid computing. IGTF manages authentication profiles that
provide the minimum requirements on X.509 PKI CAs. For example, the Authentication Profile
for Classic X.509 Public Key Certification Authorities with secured infrastructure (Classic CA)
describes the minimum requirements on traditional X.509 PKI CAs. The traditional X.509 PKI
CA, actually the registration authority (RA), itself vets the identity of any entity by means of a
face-to-face meeting. The vetting of identity is confirmed via photo-identification and/or similar
valid official documents. Authentication profiles managed by IGTF prescribe for cryptography as
certificate and CRL profiles. CRL stands for certification revocation list. The certificate and CRL
profiles prescribe for handling X.509 information.

The High Performance Computing Infrastructure (HPCI) in Japan offers a distributed comput-
ing infrastructure. In order to easily access the computing resources constituting HPCI, a single
sign-on system is needed. HPCI introduced GSI [10], [11] as a component technology for single
sign-on. Since GSI is based on PKI, we have to discuss who or which organization issues what kind
of certificates and confirm whether all applications used in HPCI are able to use the certificates.

Taking into account the compromise of ciphers in PKI, IGTF started discussion about SHA-
2 migration from 2012 and made the plan to issue SHA-2 based certificates from August 2013.
IGTF’s discussion obviously focuses on CA related issues: how CA issues SHA-2 based certificates
and when CA should start to issue SHA-2 based certificates. Although SHA-2 based certificates
can be issued by CA, it would be meaningless if all applications used in the PKI domain cannot use
the SHA-2 based certificates. However, there is no comprehensive discussion including whether

2

P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority. . . Eisaku Sakane

the applications used in the PKI domain can use SHA-2 based certificates.
In this paper, we present the design and implementation of HPCI CA, and also mention the

authentication system of HPCI. First, we discuss how HPCI CA issues SHA-2 based certificates.
Next, we investigate whether the GSI-enabled applications such as GSI-OpenSSH [12] can use
SHA-2 based certificates on all platform that should be considered. Finally, we conduct the oper-
ation tests for the HPCI authentication system where SHA-2 based certificates are deployed, and
show that the HPCI authentication system including not only the application server but also the
client works properly. Moreover, this paper will contribute to the grid community by clarifying our
knowledge obtained through the production-level operation of HPCI where SHA-2 based certifi-
cates are deployed.

The reminder of this paper is organized as follows. In Section 2 we present an overview
of the authentication system in HPCI and discuss requirements and issues for HPCI CA and PKI
participants. Section 3 presents the design and implementation of CA for HPCI. Section 4 evaluates
a test environment deployed SHA-2 based certificates. Section 5 makes discussion and presents
future issues. Finally, Section 6 concludes the paper.

2. Requirements and issues

This section presents an overview of the HPCI authentication system and discusses require-
ments and issues for HPCI CA and its PKI participants.

2.1 HPCI authentication system

The High Performance Computing Infrastructure (HPCI) in Japan is a distributed computing
infrastructure composed of high performance computing resources located in Japan. HPCI started
the production-ready operation from the end of September 2012. As of March 2013, ten supercom-
puter sites, including the K computer [6], and two high performance shared storage sites organize
HPCI and the resources are connected with the SINET-4 network [7], the Japanese academic back-
bone network connecting more than 700 universities and research institutions. Figure 1 shows an
overview of HPCI.

Since HPCI is a distributed computing infrastructure, it is necessary to offer a single sign-on
system to HPCI users. HPCI adopts Shibboleth [8], [9] and Grid Security Infrastructure (GSI) [10],
[11] as component technology to realize the single sign-on system. The Shibboleth federation sys-
tem is used as the initial authentication in HPCI. Namely, HPCI imposes Shibboleth authentication
on users when access to the HPCI portal, which offers the issuance service of a user certificate as a
Shibboleth service provider (SP). HPCI account is an account provided by the Shibboleth identity
provider (IdP). After the Shibboleth authentication, HPCI users can obtain their certificate via the
HPCI portal. The user certificate is stored in the certificate repository managed by HPCI CA sys-
tem. The user can download it into user’s terminal. GSI offers the single sign-on system to access
the supercomputers and shared storages. To access the supercomputers, the HPCI user issues the
proxy certificate via the HPCI portal. According to the proxy certificate handling in our default
setting, the HPCI user can store his/her proxy certificate in the proxy certificate repository or can
download it into his/her terminal. Then, using GSI-enabled SSH such as GSI-OpenSSH [12], The
HPCI user can log in the front-end of the supercomputer.

3

P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority. . . Eisaku Sakane

!"#$%&
'(!"#$%&

)'

shared storage

single sign-on

CA system

SINET-4

computer
resource

!"#$%&&
*+(

!"#$%&&
*+(

!"#$%&&
*+(

,(-*&
.//0%

/1234/.01&
2156!#0627&

AICS, U. Tokyo

8**&
computer
resource

computer
resource9*-'&:;</6=5>012?&

'>512/6=5>012&-1@012!&#@&A&
B@#C12!#31!&

526D7&/120%&
2156!#0627&

E'*<'',&
!12C12&

E'*<'',&
!12C12&

E'*<'',&
!12C12&

,(-*&5620.F
apply certificate

Figure 1: An HPCI overview.

2.2 Requirements and issues

As described in Section 2.1, HPCI uses GSI as a technology to realize the single sign-on to the
computing resources. We have to discuss details of certificates deployed to HPCI. The requirement
for HPCI authentication system with respect to PKI (GSI) is simple. The IGTF requirements
mentioned in Section 1 should be considered because HPCI plans to interoperate with world-wide
grid communities. We started to build HPCI in 2011 toward the production-ready operation in
September 2012. Although the start of the production-ready operation of HPCI was about one year
before the end of SHA-1 based certificate issuance planned by IGTF, we decided to build GSI in
HPCI with SHA-2 based certificates at the start to avoid a burden of work to shift from the SHA-1
based system to the SHA-2 based system, because shifting the system within one year requires too
much cost.

In order to use SHA-2 based certificates, the following issues should be addressed:

1. CA should be able to issue SHA-2 based certificates.

2. GSI-enabled SSH server should be able to use a SHA-2 based server certificate.

3. GSI-enabled SSH client should be able to use a SHA-2 based client certificate.

The first and second issues will be trivial. However, the third issue is not trivial because there are
several platforms that should be supported for client, for example, Linux, OS X and MS Windows.
It has been unknown whether or not GSI-enabled SSH clients using SHA-2 based certificate on
such platforms work properly.

3. Design and implementation

This section presents the design and implementation of the certificate authority for HPCI

4

P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority. . . Eisaku Sakane

UN*X OS X Windows

CA NAREGI-CA - -
Server GSI-OpenSSH - -
Client GSI-OpenSSH GSI-OpenSSH GSI-SSHTerm

Table 1: Software for GSI in HPCI.

sha224WithRSAEncryption id-dsa-with-sha224 ecdsa-with-SHA224
sha256WithRSAEncryption id-dsa-with-sha256 ecdsa-with-SHA256
sha384WithRSAEncryption ecdsa-with-SHA384
sha512WithRSAEncryption ecdsa-with-SHA512

Table 2: SHA-2 based digital signature algorithms supported by AiCrypto.

(HPCI CA) and software packages for its PKI participants. Table 1 shows software packages on
each platform.

3.1 CA

Since CA is the cardinal point of security, it is important how to operate CA. CA in production-
level has a Certificate Policy and Certification Practice Statement (CP/CPS) [13]. We defined
the CP/CPS of HPCI CA based on the Member Integrated X.509 PKI Credential Service (MICS)
profile authorized by IGTF, because MICS seems fit for the operation of the HPCI authentication
system. As mentioned in Section 2.1, an HPCI user is able to issue a certificate with his/her HPCI
account. An HPCI account is provided by the supercomputer center, which operates the Shibboleth
IdP. We can regard the supercomputer center as an organization having an identity management
(IdM) system described in the MICS profile.

To solve the issue for CA, namely, to issue SHA-2 based certificates, we adopt NAREGI-
CA software for implementation of HPCI CA. The NAREGI-CA [14] software is an open source
software package to easily build a PKI in grid computing. This was developed by the National
Institute of Informatics (NII) in Japan as a component of the NAREGI Grid Middleware [15].
NAREGI stands for National Research Grid Initiative. The NAREGI-CA includes a cryptographic
library, called AiCrypto, CA/RA daemon programs, command-line utilities and web user interfaces
for users and RA administrators. AiCrypto provides many kinds of cryptography used in PKI,
concretely, DES, 3DES, RC2 and AES for block ciphers, RSA, DSA and ECC for public-key
ciphers, MD2, MD5, SHA-1 and HMAC for hash functions, and PKCS libraries (#8, #10, #11
and #12). AiCrypto supports SHA-2 family and digital signature algorithms using SHA-2 listed
in Table 2, and provides a set of APIs to daemon programs and command-line utilities. Moreover,
NAREGI-CA defines a protocol prescribing on-line interactions between PKI components, called
the lightweight certificate management protocol (LCMP). LCMP is designed based on CMP [16].

The CA system in the HPCI authentication system is composed of IA (issuing authority), the
RA servers, the certificate management system and the portal. Figure 2 shows the architecture of
the CA system. IA and RA daemon programs, aicad and airad, run on the IA server and the RA
server respectively. The private key of CA is stored in a hardware security module (HSM). The
aicad creates a certificate and publishes a CRL. The airad receives CSR from the applicant, check

5

P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority. . . Eisaku Sakane

!"#$%&'
()*+,-')!.

/0'(%+#%1.
23#$-'

456$')78$36

93#$#3:

!#";7'23#$-'
/3<"8+$"#7

23#=>9%$3'
/3<"8+$"#7

20'878$36

?)4

@0'(%+9%1.

A '93#=>9%$3'+88B%C93'
A '<#";7'93#$-'+88B%C93'

#3:B38$'D+$*'%E#+,B$38'

+C$3#%9="C',3$D33C'9"6<"C3C$8

Figure 2: Architecture of the CA system.

the CSR, then send it to the aicad. A command-line utility, certreq, creates CSR and sends it to
the airad. Communications between aicad, airad and certreq are based on LCMP. The certificate
repository and the proxy certificate repository are implemented using MyProxy [17]. The certificate
management system is a special product for HPCI. This system manages each user certificate,
handles a set of user information to issue a certificate and issues a command to the RA server and
the repositories according to user’s request via the HPCI portal. Let us consider a user certificate
issuance at the first time. An HPCI user make a request to the HPCI portal for certificate issuance
after Shibboleth authentication. If the user succeeds in the Shibboleth authentication, the HPCI
portal will send the request with some attributes used to set to X.509 information to the certificate
management system. Receiving the request with the attributes, the certificate management system
executes the certreq command to obtain the user’s certificate. CSR created by the certreq is sent
to the IA server via the RA server, then the aicad signs the CSR and sends back to the RA server.
The RA server sends the certificate to the certificate management system. Finally, the certificate is
stored in the certificate repository in our default setting.

3.2 Server

In order to build a GSI-enabled SSH server, we use GSI-OpenSSH [12]. GSI-OpenSSH is
a modified version of OpenSSH that adds support for the GSI authentication and credential for-
warding, providing a single sign-on and file transfer service. The GSI implementation of Globus
Toolkit [18] uses OpenSSL [19] to handle certificates. Since recent OpenSSL supports SHA-2, the
server is able to use a SHA-2 based certificate.

3.3 Client

There are at least three platforms that should be supported for GSI-enabled SSH client, namely,
UN*X, Mac OS X and MS Windows. Among such platforms, many HPCI users make use of MS
Windows. As shown in Table 1, HPCI recommends the GSI-SSHTerm as a GSI-enabled SSH
client for MS Windows. Since Mac OS X is a UNIX OS, HPCI recommends the GSI-OpenSSH as
a client for UN*X.

The GSI-SSHTerm [20] is a GSI-enabled terminal emulator for multi-platform and an open
source Java application maintained by the UK’s National Grid Service (NGS). One of the advan-

6

P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority. . . Eisaku Sakane

tages of the GSI-SSHTerm is that its installation is quite easy. So, HPCI adopts the GSI-SSHTerm.
However, the official latest release of the GSI-SSHTerm, version 0.91h, does not support SHA-
2 based certificates. The GSI-SSHTerm uses a Java implementation for GSI, jGlobus 1.8, which
does not support SHA-2 family. The jGlobus 1.8 uses the PureTLS [21] to verify certificates. How-
ever, the PureTLS is no longer actively maintained and does not support recent Java such as the
Oracle Java Standard Edition 6. Thus, we came to a conclusion that it is difficult to improve the
GSI-SSHTerm, that is the PureTLS, in order to be able to handle SHA-2 based certificate.

We decided to use the other development branch, jglobus2_branch (0.91i-ncsa). This branch
was committed by the National Center for Supercomputing Applications (NCSA), US, and is based
on the jGlobus 2 [22] that supports SHA-2 family. Therefore, an improvement in the GSI-SSHTerm
0.91i-ncsa for handling SHA-2 based certificates is unnecessary. Moreover, we added the improve-
ments of the GSI-SSHTerm 0.91i-ncsa as follows:

• “null” as host-key algorithm in key exchange algorithm negotiation.

The GSI-enabled ssh daemon provided by GSI-OpenSSH, gsisshd, selects a host-key algo-
rithm in key exchange algorithm negotiation with the client. When no SSH host keys such as
ssh_host_rsa_key is provided by the server, gsisshd selects only “null” algorithm. The origi-
nal GSI-SSHTerm does not understand “null” algorithm; thus, we enabled the GSI-SSHTerm
to understand “null” algorithm.

• more consistent drawing process presenting the progress of file-transfer in SFTP session.

The graphical user interface (GUI) of the GSI-SSHTerm is implemented by using Swing,
which is the primary Java GUI widget toolkit. In addition, the GSI-SSHTerm has an exclu-
sive Thread to file-transfer, which manages a progress bar window in the file-transfer. Since
the file-transfer Thread runs independently of the Thread of Swing, both Threads often con-
flicted. We improved the GSI-SSHTerm so that the drawing process in the file-transfer runs
in cooperation with the Swing’s Thread.

4. Operation Tests

Before the start of the production-ready operation of HPCI, we conducted operation tests for
HPCI authentication system where SHA-2 based certificates were deployed.

For the CA system, the IA and RA servers run on Red Hat Enterprise Linux 6.1. The IA server
is 32-bit operating system (OS), because the device driver for the HSM, which we adopted the
SafeNet’s Luna G5 [23], did not support 64-bit Linux OS. We created the RSA key-pair of HPCI
CA and stored the private key in the HSM by using NAREGI-CA 2.4. The public key of HPCI CA
had 2048 bit length, and was signed with sha256WithRSAEncryption by NAREGI-CA.

All end-entity certificates used RSA as public-key cryptography, had 2048 bit public-key
length, and were also signed with sha256WithRSAEncryption by NAREGI-CA. For user cer-
tificates, the CSRs were created by only NAREGI-CA as mentioned in Section 3.1. For server
certificates, the CSRs were created by NAREGI-CA or OpenSSL. For OpenSSL, for example, an
applicant executed interactively the following command:

7

P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority. . . Eisaku Sakane

OS Java

OS X 10.6.8 Oracle Java 1.6.0_35
OS X 10.7.5 Oracle Java 1.6.0_35
OS X 10.8.2 Oracle Java 1.6.0_35
openSUSE 12.2 OpenJDK Java 1.7.0
Red Hat Enterprise Linux 6 (32bit) Oracle Java 1.6.0_38
Ubuntu 12.04 LTS OpenJDK Java 1.6.0_24
Windows XP SP3 (32bit) Oracle Java 1.6.0_35
Windows Vista SP2 (32bit/64bit) Oracle Java 1.7.0_07
Windows 7 SP1 (32bit/64bit) Oracle Java 1.7.0_07

Table 3: Platforms on which the modified version of GSI-SSHTerm works.

$ openssl genrsa -des3 -out hostkey.pem 2048

$ openssl req -new -key hostkey.pem -out hostreq.pem \

> -config ./openssl.cnf -reqexts v3_req

where the configuration file, openssl.cnf, was used to set the subject alternative name extension.
For NAREGI-CA,

$ certreq csr -key hostkey.pem -req hostreq.pem -size 2048 \

> -s -g "SSL server" -cn gsissh.example.org -em . -alt-dns

where the option, -alt-dns, enables the certreq to use the common name (CN), gsissh.example.org,
as DNS name in the subject alternative name extension.

Most of the GSI-enabled SSH server were built on the Red Hat compatible Linux distribution,
like CentOS 5.6 or later. We used the GSI-OpenSSH included in Globus Toolkit 5.0.4. Since
the GSI implementation of Globus Toolkit uses the OpenSSL library, it is necessary for the GSI-
enabled server to have the OpenSSL library supporting the SHA-2 family. There is no problem
in above Linux distributions. However, for example, CentOS 4.9 is not suitable OS for the GSI-
enabled SSH server because CentOS 4.9 has OpenSSL 0.9.7a that does not support the SHA-2
family. In our case, the OS of the GSI-enabled SSH server at a certain supercomputer center was
Red Hat Enterprise Linux 4.9 with which CentOS 4.9 is compatible. It was impossible to update
the OS to suitable OS because of the circumstances of the supercomputer center. To solve the
problem, we installed the OpenSSL suitable for GSI, e.g., version 0.9.8, separately from OpenSSL
0.9.7a. Two OpenSSL libraries should coexist in the system because the OpenSSL library is a core
library for the system.

For the GSI-enabled SSH client on UN*X platforms, we used the same GSI-OpenSSH as the
server. For the HPCI users, the client software for Mac OS X or MS Windows is more important.
For MS Windows platform, we used the modified software based on the GSI-SSHTerm 0.91i-ncsa.
Table 3 shows combinations of OS and Java implementation at our operation tests, on which the
modified version of the GSI-SSHTerm works.

We confirmed that SHA-2 based certificates work well in our test environment.

8

P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority. . . Eisaku Sakane

5. Discussion and future issues

In this section we mention further GSI-SSHTerm improvement that solves a problem recog-
nized after the start of the production-ready operation of HPCI, and discuss future issues.

5.1 GSI-SSHTerm improvement

After the start of the production-ready operation of HPCI, we have encountered a troublesome
happening in using the modified version of GSI-SSHTerm. It is that a client fails to connect a
certain server due to an error that occurred in the connecting or in authenticating. The client can
rarely log in the server. The error message of the GSI-SSHTerm at the failure shows that “Expecting
a non-zero length token from GSS_Init_sec_context”. This problem happened when we use GSI-
SSHTerms to connect GSI-SSH servers in question. However the problem did not happen when we
use GSI-OpenSSH as client. The essential causes of the problem has not been specified yet. It may
be a certain network problem between the client and server rather than GSI-SSHTerm problem.
Since it was hard to pinpoint the cause of the problem, we further improved the GSI-SSHTerm to
avoid the problem.

The GSI-SSHTerm returns the error at the following:

method: performClientExchange()
class: com.sshtools.j2ssh.transport.kex.GssGroup1Sha1

Investigating the source code of GSI-SSHTerm, we found that the method, gsscontext.initSecContext(),
returned “null”, so that the handshake token from GSS_Init_sec_context would become zero. Fur-
ther investigating why the token was zero, it was found that the handshake token could not be
read in the method, nextHandshakeToken(), of the class, edu.illinois.ncsa.BCGSS.TlsHandlerUtil,
because of unspecified reasons.

The class, TlsHandlerUtil is defined in ncsa-lcrypto.jar. The source code of ncsa-lcrypto.jar is
available at the git repository of BouncyCastleSSLv3 [24]. Investigating the source code of ncsa-
lcrypto.jar, we found that the method, readData(), provided by the class, RecordStream, breaks
off reading halfway the handshake token from the server under unspecified situations. Then, we
improved the readData() to preserve the negotiation of the handshake token. It was confirmed that
our improvement solved the problem.

5.2 CA accreditation by IGTF

The IGTF requirements refers to not only SHA-2 based certificates but also the following
topics:

• Accessibility of CRL distribution point over IPv6.

• Support for OCSP responder.

OCSP [25] stands for Online Certificate Status Protocol.
HPCI CA aims at accreditation by IGTF for interoperations with world-wide grid communi-

ties. Thus, HPCI CA should satisfy the remainder of the requirements. Currently, HPCI CA is
not ready for the requirements, however, there is no technical problem because the NAREGI CA,

9

P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority. . . Eisaku Sakane

which is an accredited CA by IGTF in Japan and operated by NII, already has knowledge of OCSP
responder by OpenCA [26] through pilot operation for the OCSP. We plan to hand the role of the
NAREGI CA over the HPCI CA in the near future.

6. Summary

In this paper, we presents a design and implementation of certificate authority for HPCI au-
thentication system that uses GSI as component technology. Our contribution in this paper is as
follows:

• We proposed a GSI-enabled software environment deployed SHA-2 based certificates, which
covers not only CA but also the GSI-enabled SSH server and the client.

• We discussed the improvements of GSI-enabled SSH client.

We believe that our improvement of GSI-SSHTerm would be more useful for a grid computing
infrastructure that encounters the happening mentioned in Section 5.1, because it would be difficult
to analyze the essential cause of the problem due to network complexity.

Acknowledgments

This work is partially supported by the Ministry of Education, Sports, Science and Technology
in Japan.

References

[1] ITU-T Recommendation X.509, http://www.itu.int/rec/T-REC-X.509/en

[2] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, Recommendation for key Management – Part 1:
General (Revision 3),
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

[3] Cryptography Research and Evaluation Committees in Japan, http://www.cryptrec.go.jp/english/

[4] International Grid Trust Federation, http://www.igtf.net/

[5] High Performance Computing Infrastructure Portal Site, https://www.hpci-office.jp/

[6] K computer – RIKEN Advanced Institute for Computational Science, http://www.aics.riken.jp/en/

[7] Science Information NETwork 4, http://www.sinet.ad.jp/index_en.html?lang=english

[8] R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and K. Klingenstein, Federated Security: The
Shibboleth Approach, EDUCAUSE Quarterly, 27, (2004).

[9] Shibboleth, http://shibboleth.net

[10] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman, S. Meder,
L. Pearlman, and S. Tuecke, Security for Grid Services, in proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing, (2003).

[11] V. Welch, Globus Toolkit Version 4 Grid Security Infrastructure: A Standard Perspective,
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf

10

http://www.itu.int/rec/T-REC-X.509/en
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://www.cryptrec.go.jp/english/
http://www.igtf.net/
https://www.hpci-office.jp/
http://www.aics.riken.jp/en/
http://www.sinet.ad.jp/index_en.html?lang=english
http://shibboleth.net
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf

P
o
S
(
I
S
G
C

2
0
1
3
)
0
1
3

Design and Implementation of Certificate Authority. . . Eisaku Sakane

[12] GSI-OpenSSH, http://grid.ncsa.illinois.edu/ssh/

[13] S. Chokhani, W. Ford, R. Sabett, C. Merrill and S. Wu, Internet X.509 Public Key Infrastructure
Certificate Policy and Certification Practices Framework, http://tools.ietf.org/html/rfc3647

[14] NAREGI-CA development, http://ca-dev.naregi.org/

[15] NAREGI project, http://www.naregi.org/

[16] C. Adams and S. Farrell, Internet X.509 Public Key Infrastructure (PKI) Certificate Management
Protocols, http://tools.ietf.org/html/rfc2510

[17] MyProxy Credential Management Service, http://grid.ncsa.illinois.edu/myproxy/

[18] Globus Toolkit, http://www.globus.org/toolkit/

[19] OpenSSL: The Open Source toolkit for SSL/TLS, http://www.openssl.org/

[20] GSI-SSHTerm Application, http://www.ngs.ac.uk/use/tools/gsisshterm

[21] Claymore PureTLS, http://www.rtfm.com/puretls/

[22] jGlobus, https://github.com/jglobus

[23] Safenet Luna G5, High Assurance Hardware Security Module with a USB interface,
http://www.safenet-inc.com/products/data-protection/hardware-security-modules/luna-g5/

[24] SSLv3 support for Bouncy Castle’s TLS implementation,
https://github.com/jsiwek/BouncyCastleSSLv3

[25] M. Myers, R. Ankney, A. Malpani, S. Galperin and C. Adams, X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP, http://tools.ietf.org/html/rfc2560

[26] OpenCA Research Labs. http://www.openca.org/

11

http://grid.ncsa.illinois.edu/ssh/
http://tools.ietf.org/html/rfc3647
http://ca-dev.naregi.org/
http://www.naregi.org/
http://tools.ietf.org/html/rfc2510
http://grid.ncsa.illinois.edu/myproxy/
http://www.globus.org/toolkit/
http://www.openssl.org/
http://www.ngs.ac.uk/use/tools/gsisshterm
http://www.rtfm.com/puretls/
https://github.com/jglobus
http://www.safenet-inc.com/products/data-protection/hardware-security-modules/luna-g5/
https://github.com/jsiwek/BouncyCastleSSLv3
http://tools.ietf.org/html/rfc2560
http://www.openca.org/

