Pulsar scattering in space and time

Olaf Wucknitz wucknitz@mpifr-bonn.mpg.de

EVN Symposium 9–12 Oct 2012, Bordeaux

Pulsar scattering in space and time

introduction

- temporal and angular broadening
- secondary spectrum
- direct 3-dim approach
- global VLBI project
- preliminary results

outlook

Interstellar scattering: geometry

$$\tau = \frac{1}{2}\theta^2 D'$$

 $D' = \frac{DD_s}{D-D_s} \sim D$

titlepage introduction summary

back forward

-1 +1

Effects of scattering

- many 'speckles' with different θ
- → angular broadening (not always resolved)
 - delays ~> temporal broadening (not always resolved)
 - scintillation, correlated over ${\it \Delta}
 upprox 1/ au$
 - all smeared out for large sources
- → relevant for some AGN and for pulsars
 - typical wavelength-dependence: $heta \propto \lambda^{2.2}$, $au \propto \lambda^{4.4}$
 - What can we learn from

$$2 au \sim heta^2 D'$$
 ?

titlepage introduction summary

-1 +1

• . . . are sufficiently small

• . . . provide way to measure au if > intrinsic width

• angular broadening can sometimes be measured with VLBI

titlepage introduction summary

Comparing angular and temporal broadening

for uniform distribution $0 \le D_{\rm s} \le D$

• $\tau = \frac{1}{2}\theta^2 \frac{DD_s}{D-D_s}$

can determine 'effective' D_s

but not the distribution!

• uniform (mostly) fits well

titlepage introduction summary

back forward

-1 +1

Secondary spectrum

• 2-d Fourier transform of dynamic spectrum

titlepage introduction summary

back forward

-1 +1

fullscreen

6

Interpretation of secondary spectrum

- τ from FT(freq)
- angle from FT(time) via Doppler effect: $\dot{ au} \propto \theta \cdot \dot{ heta} \leq | heta| |\dot{ heta}|$
- $au \geq \operatorname{const} imes \dot{ au}^2$ relative to heta = 0
- parabolic (inverted) arcs can be explained
- can be extended to interferometry [Brisken et al. (2010)]
- needs Doppler as proxy for θ (model-dependent)
- does not utilise the pulses
- can we do it directly?

measure shape/size as function of τ or vice versa

titlepage introduction summary

Pulsar scattering: one/three screens

titlepage introduction summary

back forward

-1 +1

fullscreen

8

Pulsar scattering: continuous medium

can not only determine distance

- but distribution
- detect anisotropies?
- less model-dependent

titlepage introduction summary

back forward

-1 +1

The project

global VLBI experiment GW022A/B June 2011
 with Michael Kramer, Joris Verbiest (ephemerides)

• 1.4 GHz

★ 4 target pulsars, 3 control pulsars, fringe-finders
★ VLBA, JB, WB, EF, ON, MC, TR, AR
★ 8 h total (asked for more), 512 Mb/s

• 327/610 MHz

★ 5 target pulsars, 3 control pulsars, fringe-finders

- ★ VLBA, JB, WB, EF, AR
- \star 8 h total (asked for more), 256 Mb/s

The targets

names	D [kpc] [DM pc cm ⁻³	P ³] [sec]	freq [GHz]	S [mJy]	au[msec]	$ heta_{FWHM}$ [mas]	$\lambda/ heta$ [km]	
J1818–1422 B1815–14	8.1	622	0.2915	1.4	7.1	15	92	470	
J1842–0359 B1839–04	4.2	196	1.8399	1.4	4.4	4.6	144	300	
J1848–0123 B1845–01	3.8	159	0.6594	0.327 1.4	105 8.6	142 0.23	410 17	460 2500	
J1852+0031 B1849+00	10.0	787	2.1802	1.4	2.2	34–280	125–358	120–350	
J1901+0331 B1859+03	8.0	402	0.6555	0.327	300	200	339	560	
J1935+1616 B1933+16	4.6	157	0.3587	0.327	320	0.9	15 –30	6300–13000	
J1939+2134 B1937+21	8.3	71	0.0016	0.327	400	0.13	8.5– 15	13000–22000	
J1948+3540 B1946+35	7.9	129	0.7173	0.327	226	32	136	1400	

titlepage introduction summary

back forward

-1 +1

Analysis

• in progress. . .

correlation with DiFX in Bonn (MPIfR/AlfA)

- ★ make profiles, create matched filter
- ★ gated correlation (baselines and autos)
- \star calibration in AIPS (amplitudes from control pulsars)
- \star binned correlation (e.g. 400 bins)
- \star calibrate binned correlations with same CL

produce

 \star images as function of pulse phase (τ) * pulse profiles as function of baseline

• show B1815–14 at 1.4 GHz, two scans: 15+21 min, EF,(JB),ON,WB

titlepage introduction summary

B1815–14 at 1.4 GHz: gated visibilities

titlepage introduction summary

back forward

-1 +1

fullscreen

13

Pulse profiles: autocorrelations (1)

titlepage introduction summary

back forward

-1 +1

Pulse profiles: autocorrelations (2)

titlepage introduction summary

back forward

-1 +1

Pulse profiles: cross-correlations at 0.621 Mlambda

16

Pulse profiles: cross-correlations at 0.727 Mlambda

titlepage introduction summary

back forward

-1 +1

Pulse profiles: cross-correlations at 0.918 Mlambda

titlepage introduction summary

back forward

-1 +1

Pulse profiles: cross-correlations at 1.076 Mlambda

titlepage introduction summary

back forward

-1 +1

Pulse profiles: cross-correlations at 1.289 Mlambda

titlepage introduction summary

back forward

-1 +1

Pulse profiles: cross-correlations at 1.598 Mlambda

titlepage introduction summary

back forward

-1 +1

To come soon

make images (show expanding rings?)

amplitude calibration using autocorrelations

- \star baseline gains $g_{12} = g_1 \overline{g}_2$
- not possible in general (noise and RFI in autocorrelations)
- \star we have pulsars: can use folded profile
- ★ 2-bit sampling: different scale for auto and cross
- \star for Gaussian signal: understand the maths, can correct
- * pulse-cal, switched power: distort sampler statistics
 (can introduce closure errors!)
- * can take that into account (extension of DiFX) \rightsquigarrow currently good to $\sim 10\%$
- quantitative analysis for ISM

Summary

3-dim scattering study
 * temporal broadening (1 dim)
 * angular broadening (2 dim)

- so far only radial, no full calibration
- will produce 2-dim images, expanding rings or blobs
- \rightsquigarrow distribution of scattering screen(s)
 - 3 more targets at 1.4 GHz, 5 at 327/610 MHz

• future:

- ★ use pulsar backends
- ★ LOFAR (with LWA?), RadioAstron?