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1. Introduction

Recently, following an earlier suggestion of [15], a general method bas proposed, [1],
to obtain new exact analytic solutions in Witten's cubic open string field th€@8FHT) [5], and
in particular solutions that describe inhomogeneous tachyon condens@tiogeneral grounds
it is expected that an OSFT defined on a particular boundary conforet@ltfieory (BCFT) has
classical solutions describing other boundary conformal field thedie®][ Analytic solutions
have actually been constructed describing the tachyon vacuum [8] 4€e @lso the reviews [11,
12]. In this panorama solutions describing inhomogeneous and relevamdéry deformations of
the initial BCFT were not known until recently, though their existence wadipted [6, 7]. This
absence was filled up in [15, 1], and in [2, 3] the energy of a D24ésmution was calculated
for the first time. In [4] these results were extended to analytic SFT solutiomesponding to
D(25-p)-branes, for any, and their energy was calculated.

Notwithstanding these successes, some formal problems have remairned. betere we
would like to discuss these problems. The first issue concerns the iritgipmeof thee parameter
used in [2, 3, 4]. The latter was first introduced in the analysis as a tegaad subsequently
(erroneously) interpreted as a gauge parameter, in the sense thaapfyantities were supposed
to be independent of it. Below we show that, both from a theoretical anchamcal point of view,
€ is a mere regulator (not a gauge parameter) and the only meaningful msutibtained in the
€ — 0 limit. This conclusion does not affect the results in [2, 4], because tleeg abtained pre-
cisely in that limit, but it clarifies a theoretical issue which is important in itself dealia relation
to the subsequent point.

The next problem was raised in [3] and a solution to it was proposed in Ejpendix D. In
this note we would like to return to this issue and discuss it in full detail. It corsce would-be
violation of the SFT equation of motion for the string field candidates considarfl, 2, 4, 3],
which originates from the use of a Schwinger parametrization of inveraeeels. Our discussion
of the problem starts with pointing out that similar problems arise in the seardofations in
classical field theory. We show, for instance, that were we to take intwuatterms like the vio-
lating term of [3] (which we call spurious terms) in solving Einstein gravity inuam, we would
come to the paradoxical conclusion that the Schwarzschild black hole &sgutition of Einstein
gravity. We argue that, when the issue is considered in the proper settingolatons to the
eqguation of motion occur for the solutions considered in [2, 4]. The spsitierms when inserted
in convergent integrals give vanishing contributions and, on the otimet, ltan give nonvanishing
(but ambiguous) contributions only if inserted in discontinuous integraéskisw for the precise
meaning). This suggests that the appropriate mathematical setting to integpnésttine theory of
distributions. We suggest that the lump solutions must be considered asutiigirih Once this is
done, any ambiguity linked to spurious terms in the equation of motion, disappear

The paper is organized as follows. After a review of [1] and [2], saecfias devoted to the
clarification of the nature of the parameter and relevant numerical calculations. In section 3 we
outline the problem that arises when we repreiej% by means of a Schwinger parametrization.
In section 4 we discuss in detail the example of the Schwarzschild solution stekirgravity
and show what would happen if we took into account spurious terms. clioeeb we argue on
a general ground that the offending term of [3] does not have rifleitizenship among well
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behaved mathematical objects. In section 6 we compute the offending (msguerm in the SFT
equation of motion and show that it is in fact related to an ambiguity in the formalisdnstzould
not be considered as a matter of principle, but, anyhow, even if takendntwat, when inserted
in a convergent expression for the energy, this term gives a vanislimgibution. In section
7 we introduces a numerous set of states that can play the role of testist#tesdistribution
theory interpretation of the lump solution. Section 8 is devoted to a summary ofsthesdion and
results. We also suggest that an appropriate mathematical frameworle foratblem discussed in
this paper and for similar problems may be based on a re-elaboration of dettdution theory.

1.1 Review of the previous results
In [1], to start with, the well-knowrK, B, c algebra defined by

_ T _ gt (1

was enlarged as follows. In the sliver frame (obtained by mapping the UldR itafinite cylinder
C, of circumference 2, by the sliver map;% arctare), by adding a (relevant) matter operator

¢=<p<;>\l> (1.2)

with the properties
[c9]=0, [B¢l=0  [K g =00 (1.3)
In this new algebr& has the following action:
Qp=cdp+dcoe. (1.4)

It can be easily proven that

1
=cp— —(p—dp)Bcdc 1.5
Yo =Cp— 17— 99) (1.5)
does indeed satisfy the OSFT equation of motion

QUp + Yy = 0. (1.6)
Itis clear that (1.5) is a deformation of the Erler—Schnabl solution, €§eWhich can be recovered
for o =1.
In order to prove that (1.5) is a solution, one demands(ita)* = 0, which requires the OPE
of @ at nearby points to be not too singular.
Using theK, B, ¢, ¢ algebra one can show that

B o B . B \_,
Wi K \WKkies

So, unless the homotopy—fief@% is singular, the solution has trivial cohomology, which is the
defining property of the tachyon vacuum [15, 16]. On the other hanardar for the solution to
be well defined, the quantitﬁp((p— d¢) should be well defined too. Finally, in order to be able
to show that (1.5) satisfies the equation of motion, one nEed® to be invertible.

In full generality we thus have a new nontrivial solution if
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1 . .
1. g3 Is singular, but

2. ﬁp((p— 5¢) is regular and

3 kg K+o) =1

In [1] sufficient conditions forp to comply with the first two requirements were determined.
Let us parametrize the worldsheet RG flow, referred to above, by amederu, whereu = 0
represents the UV and= o the IR, and rewritap as @,, with .—o = 0. Then we require foq,
the following properties under the coordinate rescaliig) = §

1 z
frow@ =7 ;) (L.7)
and, most important, that the partition function
g(u) = Trje K@) = <e*f01d*°"’h(s)>C : (1.8)
1

satisfies the asymptotic finiteness condition

lim <e*folds%<5>> —finite. (1.9)
U—c o

It was pointed out in [1] that this satisfies the first two conditions above uaramtees not only the
regularity of the solution but also its 'non-triviality’, in the sense that if thiadition is satisfied,
it cannot fall in the same class as the ES tachyon vacuum solution. It weald that the last
condition above cannot be satisfied in view of the first. But this is not the. CHSis is the main
issue discussed in sec.3,5-8.

We will consider in the sequel a specific relevant opergipand the corresponding SFT
solution. This operator generates an exact RG flow studied by Witten ind&&Jalso [14], and is
based on the operator (defined in the cylin@erof width T in the arctan frame)

@u(S) = u(X?(s) + 2Inu+2A), (1.10)

whereA is a constant first introduced in [15]. Gy we have

@u(s) = u(X?(s) 4+ 2InTu+2A) (1.12)
and on the unit disb,
2 Tu
@ (0) =u(X (9)+2In§r+2A). (1.12)
If we set
ga(u) = (& fodshls)) (1.13)
we have

— A [Z"dou (x2(9)+2|n %T+2A)

ga(u) = (e )D-
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According to [13],

ga(u) = Z(2u)e 2Nz +A) (1.14)
where
1
Z(u) = —/ulr (u)e™ 1.15
(W= == vir) (1.15)
Requiring finiteness fan — o we getA = y— 1+ In4rm, which implies
1
u) = g(u) = ——+/2ur (2u)e?(1-In(2u) 1.16
and
LIjim g(u)=1. (1.17)
Moreover, as it turns oug@, = —2u, and so:
@ — 0@, = ud,qQu(s). (1.18)

Therefore thep, just introduced satisfies all the required properties and consequgantly (g,
must represent a D24 brane solution.

In I the expression for the energy of the lump solution was determined thyativey a three—
point function on the cylinde€r of circumferencd in the arctan frame. It is given by

E[Wu} = _}<wuwuLﬂu>

= /d2uT (2uT) /dy/ dx smnxsmnysmrr(x y) (1.19)

~g(uT){ — (W) + Gaut (21X) Gout (211(X — Y) ) Gaut (271Y)

_} (dZUTg(UT)
2

) ) (Ghur (20 + G (2n(x—y)) + Ghir(2m) ) }

whereGy(0) represents the correlator on the boundary, first determined by Witt@n, [1

cogko)
+2 Z U (1.20)

Moreoveréy(t,tz,t3) represents the ghost three—point functio@in

Go(ta,t2,t3) = (BOIC(ty +1)9c(tr) IS(0)) e, = —4S|nr_[|E13|n(t1_|_+t2)sinr_[|E2. (1.21)

Finally, to get (1.19) a change of variablgs t,t3) — (T, Xx,y), where
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is needed.

The expression (1.19) has been evaluated in [2]. As it turns out, thiessipn has a UV
(s~ 0, settings = 2uT) singularity, which must be subtracted away. Therefore the result one
obtains in general will depend on this subtractiom [2] it has been pointed out thatphysical
significance can be assigned only to a subtraction-independent quamtityt has been shown how
to define and evaluate such a quantity. First a new solution to the EOM, diagesn a regulator
¢, has been introducéd

Yt =clau+¢€)— (@u+€—0q,)Bcdc. (1.22)

K+a+e

its energy being 0 (after the same UV subtraction as in the previous case é-th0 limit.
Then, using it, a solution to the EOM at the tachyon condensation vacuubrekasbtained. The
equation of motion at the tachyon vacuum is

20+ ®d =0, where 20 = QD+ Y+ DYE. (1.23)
One can easily show that

Po = Yu— 5 (1.24)

is a solution to (1.23). The action at the tachyon vacuum%$o@¢,¢> — %((D,QJCD). Thus the
energy of of the lumpE[®o], is

1
E[Do] = — lim = (@, ®505)

£—0

1.
= — g lim [(¢u, ) — (UG, PEWE) — (0, ) + 300, i wd)] - (1.25)
The integrals in the four correlators at the RHS, aredR+(e) convergent. The UV subtractions
necessary for each correlator are always the same, thereforeahegl out. In [2], after UV
subtraction, we obtained

1 ,
—5 W ) =a+B, im(WE, giug) =0

1. e B 2 1. £ 1
éyLno<WU’w“w“> —a_gﬁa élano<WanUwu> _a_éﬁ (1'26)
wherea + 3 ~ 0.068925 was evaluated numerically amd= # was calculated analytically. So
E[®o] = a turns out to be precisely the D24-brane energy. In [4] the same reaslextended to
any Dp-brane lump.

*The subtraction does not fix by itself the zero-point energy. For instanadhe examples of [4], the expression
corresponding to (1.19) is explicitly gauge dependent.

tIn [2] wE was calledy.

#This number represents the result of an improved numerical evalwatibdiffers from the value given in [2] by 6
per mil.
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2. Nature of the € parameter

Eq.(1.25) and (1.26) is really what we proved in [2, 4]. That is, thelregiobtained is only
valid in the limit € — 0, and this was the correct thing to do. However we were mislead by a
wrong theoretical prejudice and by a too rough numerical result into liegjelaat the expression
in square brackets in the RHS of (1.25) is independeuat ahd therefore can be interpreted as a
gauge parameter. This is not the case, as we will show in this seetisra simple regulatoand
physical quantities can be recovered only in ¢he O limit.

In [2] we computed numericallyg, Wi ys), after making the necessary UV subtraction. The
result was reported in Table 3 there, and led us to the idea that that is @vidiethe analytic result
being O for anye. This convinced us that is a gauge parameter and, as a consequence, also the
full expression in square brackets in the RHS of (1.25) should notdepes. Although it did not
have any practical consequence on the final result, it must be saidighest ot true. The present
section is devoted to clarifying this issue.

Let us deal first with{gu, Yuu) — (Y5, Y5Y). One of the limits of the numerical evaluation
of (Y&, Wiys) in [2] was that the numerics can start only after the UV subtraction is caoried
This limits considerably the accuracy of the numerical approximation. Thession

A = (W, Ya) — (WE, WEWE),

instead, is UV finite and its numerical evaluation can be more accurate. Héenepart the numer-
ical results for a sample of values of the paramgter ..

n: 2 1 07 0.5 0.1 0.08
Agl) : —0.41968 —-0.41958 —-0.42028 -0.41860 —0.41868 —0.41853
n: 0.05 001 0005 Q003 Q001 Q0005
Agl) : —041831 -0.41660 -0.41625 —-0.41587 —0.41483 —0.414009

Table 1: Samples oﬂfgl)

The limit IimgﬁoAél) was calculated in [2] and is given by:(®&+ 3) ~ —0.41355. Since
the numbers in Table 1 are accurate up to the third digit (being very caiserthe error can be
estimated to be-0.0005) the dependence ens evident. It is also clearly visible that the sequence
of numbers tends to the expected value (arognd 0.00001 reliable numerical results becomes
hard to retrieve). The smallness of thelependence (a few percent only) was at the origin of the
misunderstanding about the naturesof

The dependence anof

AP = (W, W) — (W, WEWE)

is not much easier to detect. In Table 2 we report the numerical resultséonple of the parameter
n.

In [2] the numerical value oﬁéz) was determined in the — O limit to be: Iimg_,oAéz) =
—2B ~ —0.03652. The results in Table 1 are to be taken with a possible uncertairt@.0005.
We see that they clearly depend ®and that the limit — 0 tends to the expected value.
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n: 10 2 1 Q7 05
Aﬁz) :  —0.01431 -0.02704 —-0.0308524 —0.0323693 —0.03332
n: 0.4 0.2 0.1 0.08 005
Agz) : —0.03398 -0.03525 —0.03567 —0.03550 —0.03613

Table 2: Samples oﬂff)

After these results the dependencesaf (1.25) needs not be stresseds no gauge parame-
ter, itis a simple regulator, as it was originally conceived. This conclusiofddwave been reached
from a theoretical point of view. We see in fact that, while qufs) satisfies condition (1.7), the
combinationg,(s) + €, which appears ig§, does not since:

£
ftoe:e;«réf

Forcinge to satisfy (1.7) would require = ku for some positive constart but then, in@, + €, see
(1.10),¢ could be absorbed into a redefinitionfénd would disappear frogf,. As a consequence
the latter would actually coincide witlpy, andAgl) would vanish, which is evidently not the case.
The role ofe is precisely to break the covariance under the semigroup of rescaligqs, 78,
in order to generate a different kind of solution with respectito The conclusion is that the
parametek does not run (in the RG parlance), therefore it is not a gauge para(retee SFT
terminology). We remark that the valge= 0 is (together witte = o) the only scale invariant one.
One may be surprised at first theff is a solution to the EOM of SFT, while the term
(WE, WEYE) is e-dependent . The point is thdts formally solves the equation of motion but is
not an extreme of the action fer£ 0. The puzzle is explained of course by the fact that the param-
etere is not present in the original action. Therefore one has to prgasteriorithat the ‘solution’
actually corresponds to an extreme of the adiofhe variation of the action witls is given by
(after replacing the eomd:S~ (2% QuE) — (QZ%  y¢). For this to vanish one should be able to
‘integrate by parts’, which is not possible due to the UV subtractions impliciteérctiiculation of
the correlators, see [2] (and also [18] where similar arguments aréogedealthough not in the
same contex®). Now &:Sdoes not vanish and in order to find an extreme of the action we have to
extremize it. This is in keeping with the monotonic dependence on (smallje can see in Table
1, which tells us that the extreme is met in the limit- 0.
We have verified that also other quantities considered in section 6 of thes, pagch contain
¢, are effectivelye-dependent. In the light of the above theoretical argument, this and thieysev
numerical proof thazﬁﬁ;l> andAgz) aree-dependent would be pointless, if a misunderstanding about
the role ofe had not arisen. In any case, having at hand Table 1 and 2, we hawpgbgunity to

8The same consideration applies also to the pararetrrt it was shown in [1] thati actually disappears from the
action when we replacgy in it: uis a true gauge parameter.

9Since the UV singularity is linked to thé zero mode, one might expect that with a compacti¥iettis problem
should disappear and the integration by parts become possible. Hows\ueng as we consider solution of the type
Wu, Y& with a linearly scalings parameter, this seems to be impossible: the singularity removed from theilUxop
up in the IR, creating analogous problems. The nontrivial boundariribation in the SFT action, see also section 2, is
a new interesting feature which deserves a closer investigation.
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make the following observation: the limst— O is smooth and it tends to the expected theoretical
value (just replace the numerical valuesﬁéjf) andAf) inside (1.25)). Nothing anomalous happens
in the limit. We have proven the existence of the limit also analytically (we will sparegéder the
lengthy details), but the numerical results are more pictorial. Eq.(1.25) btaged by plugging

in 2@y = —dydg into the SFT action. Should the EOM be violated, the worst that can happen
is that the violating term, if any, contributes O to the energy. This is exactly waatill show in
section 6.

3. The problem with the Schwinger representation

We now come to the criticism raised by [3] about our solution. In order toimif1al9) one
has to use the following Schwinger representation

1 [}
= [ dtetKta) 3.1
a /0 (3.1)

of the inverse oK + @,. When using such a Schwinger representation, however, the identity

K+%(K+%):I, (3.2)

would seem not to be satisfied. To illustrate the problem, let us calculate tHampeé both the

left and the right hand sides of (3.2) with= 19%cdcc. The right hand side is trivial and, in our
normalization, it is

. Vv
Tr(Y - 1) = ImY (D)e (L = 5 (3.3)
To calculate the left hand side we need the Schwinger representation
1 0
Trly. ——(K = / dtTr[Y . e tK+@) (K 3.4
Y kg K@) = | d] (K+ )] (3.4)
Making the replacement
d
—t(K+aqu) Y —t(K+a)
e (K+ @) — dte (3.5)
one obtains
Vv
TY g (K @] =0(0) () = 57 —g(). (3.6)

which is different form (3.3) becauggc) is nonvanishing. The latter relation is often written in a
stronger form

/ dtet KK 1) =1-Q%, Q= [im e NK+®) 3.7)
0

N\—00

This (strong) equality, however, has to be handled with great caree latter is taken literally, we

could also write

1 ® 1

= [ dtetKr@w = o 3.8
K+ @ /o K+aq (3.8)

instead of (3.1). This would imply that eq.(3.2) is not satisfied, and, caesely, the equation of

motion is not satisfied byy,.
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4. An example from classical field theory

The problem raised in the previous section is actually commonplace in thén séaautions
in ordinary classical field theory and was solved long ago resorting to gutof distributions,
and tacitly incorporated in our common lore. Let us present one of margihp@examples. We
ask our patient reader to follow us through some elementary mathematics. p&/d¢heoexample
will help clarifying our line of thought in solving the puzzle raised in the prasgisection.

4.1 Preliminaries

In preparation for our 3d example let us introduce some notation:
X = rsinfBcosp, y=rsinBsing, z=rcoH
z
r=xX2+y2+22, 6= arccos, o= arctarXX
and

(4.1)

1 .
Af = rzar (r?o f) + g (siNB g f) +

1 1
2sin6 rzsinzeaqbf

Distribution theory tells us that

AFl = —4md(r) (4.2)

Now, let us consider the produc%. According to distribution theory (and to continuity) we should
have

r% _1 (4.3)

In fact, using a test functioh(x y,Z), we have

r— f>= Ilm/// dxdydzpf(x Y,2)
= Iim/// dxdydz fx,y,z) :///dxdydz fxy,z) =<1,f >
e—0 r>¢

Thereforer%, as a distribution, is 1. In view of the previous section one might decide t@use
Schwinger representation

1 * *® :
r= —>/ dtre ' = —/ dtd et Z 1 jimetr=1- Q(r) (4.4)
r 0 o Ot t—oo
Consequentl)@L is represented by

N / dte !+ nr=-—-" (4.5)

Let us elaborate a bit on this in order to prepare the ground for our dgafppm (4.4) it is
clear thatQ(r) has support at = 0, therefore it must be a delta-function-like object. Using the
definition of delta function as a limit

. t
lim |/ —e ™ = 5(x),
t—oo is

10
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we can set

Q(r) = 2Imﬁ6(r) (4.6)

This is the only way to bring(r) in the world of well-defined objects. (4.6) is obviously an
identically vanishing distribution. But, of course, if we integrate it over somgtiwvhich is not a
test function, we may get a nonvanishing result. For later use let us dé$ime

M(r) =2 lim \/fa(r), =(r) = 2/im v/t 3(r) 4.7)
Let us make a comparison between (4.3) and (4.4). An explicit calculatitasyie
1 2 2
A(rr> f—4m5(r)+r—2—r—2f0 (4.8)

as a distribution. This is a result of (4.2),f = % and of

S 1 1
i;dedmr =0 (4.9)

This last calculation is straightforward fors# 0, but at the origin one must be careful and use
distribution theory: for a test functiofi(x,y, z) we can write, for example,

///dXdde?x <1> f(xy,z ——Ilm///r>£dxdyd5|n9c08¢> f(x,y,2)

—nm/// drdede sir?0 cosh £(r,0,¢) — ///drd@dd)smzecosxpf(r 0.9)

which means that the distributional derivat'u?)é coincides with the ordinary derivative (there is
no extra contribution fronn = 0).
On the other hand, using the representation (4.4), we have

A <r:) = —AQ(r) (4.10)

The RHS is formally nonvanishing sine/rd(r)) = %rfgé(r) +3r*%5’(r) +r%5”(r). However,
remembering that the volume element contains a factof,ohQ(r) is in fact the 0 distribution.
This is consistent with (4.8). But if we do not correctly apply the rules ofrithistion theory
the RHS of (4.10) may seem to be nonvanishing (although ambiguous). Tkishappen, for
instance, if we integrate such term multiplied by a function that is more singuia%hﬁ)r r~0.
The trouble is that such a function is not a test function.

4.2 The Schwarzschild black hole ‘non-solution’

Let us check on an example that the (wrong) use of (4.10) leads to wesads. To this end
we consider the Schwarzschild solution in gravity. The Schwarzschilchglg is a solution to the
Einstein equation in vacuuni,, = 0.

11
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Let us consider the ordinary approach. The Schwarzschild metric édsrth

dre. 5 o 2
—— +r%(dB? +sirfad¢?) (4.11)

ds® = —f(r)dt® + 10

so that we have

1 .
oo = — (1), T Joo =12, gy =I7sinPO

where, for simplicity, we také (r) = 1— @ The Christoffel symbols are

f/ ff )
r8r :E:_rir’ 60: o0 reez—rf, [M :—rfsm29, (4.12)

wheref'(r) = d;(rr). There are other (completely angular) nonvanishing symbols but we wiill no

need them. As a consequence in particular we have

£ 1 1 _
Roror = - Rogog = Erff’, Rogop = érf f'sinfo (4.13)

At this point it is easy to prove, for instance, that
Roo = 0" Roror + 9°°Rogos +9%? Ropop = 0 (4.14)

so that the eom is satisfied (for thgcase).

In all the above,% is singular at the horizon= 2M, so that one component of the metric is
singular. However the Riemann tensor is not singular (and the energité3.fin the intermediate
passages we have to manipulétear derivative thereof. This is singular, but interpreting it and
carrying out all the operations in the framework of distribution theory allsingularities can be
treated correctly and the final result is regular.

Now let us see what happens instead when we use improperly the Schwepgesentation
for 1. To this end let us call

S(3) =/ dte ! (4.15)
f 0
the Schwinger representation f We have
1 1 1
fs(?)zl—Q(f% ?25(?)“_'(“)
FI(F) = Q(f), fdrS(%) — f'=(f) - f’S(%) (4.16)
The last one follows from
oSt = —/ dtt f'fetf — f’/ ditd et 4.17)
f 0 0 dt

:f’/ dtgt(te”)—f’/ dte '’ =2f'lim \/mé(f)—f’S(%)
0 0 —00

12
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Of the relevant Christoffel symbol’sgr,l'ﬁr are singular, while the others are regular. More pre-
cisely we have

=D (shnm).  m=D(z0-sq) 4.18)
o2 (7 ’ "2\~ f '
Repeating the calculation with these inputs we get
7 ff_, frf /_ 1
Roror = ?4‘7“ (f)+ 4 :(f)'i_Q(f)S(?)"i_Q(f)n(f) (4.19)
Rogos = %rff’, Rogop = %rff’sinze
Therefore
7 ff
= — 4.2
Roo = —-+— (4.20)
fff_ ff’ 28 _,
+ 7 =(f)+ 7] Q(f)+ > n'(f)

The first line is the usual (vanishing) result, the second line representddfation to the eom.
Notice thatin the framework of distribution theorhe second line vanishes, but if one takes the
previous algebraic manipulations literally one might conclude that Schwald’'sds not a solution
of Einstein gravity. In particular if we integrate the second line over a nsinftection we may
get something different from 0. This is no accident: these terms are inailysianbiguous, as is
evident if one tries to define them carefully. Terms such as those in thadéne of (4.20) are
inevitably ambiguous when considered outside the framework of distributiomthé/e will refer
to them asspurious terms

This is an example of what we run into when we abandon the principle of cityt{ior analyt-
icity) according to which the statememt% = 1 everywhere, is the correct thing. This principle has
been incorporated into the theory of distributions, which, in this way, has etetdrall the above
ambiguities (a distribution is defined via Riemann integrals, which in turn areedelim means of
continuous limiting processes, so they automatically incorporate the principentifuity). But
if we abandon this principle we end up in a jungle of contradictions.

5. Continuity and the Schwinger representation

The previous example may sound somewhat exotic, but in every resjgeatgaradigm of the
problem introduced in section 3. Let us now return to it.

In our approach in [2, 4] we have always been guided by what we bkaited above the
principle of continuity. On the basis of this principle (3.1), as opposed t9,(&8&he correct
relation. Let us summarize how we discussed this issue in Appendix D of\j@]start from the
observation thakK + @, is a vector in an infinite dimensional spadé:-+ @, = (K} + qq,(%))m,
where|l) is the identity string field (and we remark that in our applicatign@) is always inserted
in the left part of the string). Therefore the inversekof @, can also be obtained via the inverse
of the operator; = K + qu(3).

The operator, is self-adjoint. Therefore its spectrum lies on the real axis. To know more
about it we would need a spectral analysisiff, similar to what has been done for the operator

13
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K'l- in[17, 19, 20, 21]. The spectrum of the latter is the entire real axis. paetum of 7 is of
course expected to be different, but we know on a general grouhd ties on the real axis. We
can therefore define the resolventsf, R(k,.#;), which is by definition the inverse of — 7

(k being a complex parameter). The resolvent is well defined (at leasthjon@n-realk. We

do not know what type of eigenvalue the= 0 one is: discrete, continuous or residual. However,
sinceR(k, #,)(k — 2#,) = 1 is true for anyk outside the real axis, we can hold it valid also in the
limit kK — O by continuity. Therefore we conclude that, on the basis of the (healtingijple of
continuity, (3.1) is the correct relation, much raﬂs: 1 was held true everywhere in the previous
section.

The obvious difference between the two cases is that in the previousreeciise we were
talking about the inverse of a positionwhile in this section we are talking about the inverse of
a string fieldK + @,. We remark however that this is the natural correspondence when we pas
from classical gravity (classical field theory) to SFT: the role of positiarthe former is played
by string configurations in the latter.

One may object at this point that, true, since (3.1) is correct, the SFT equdtimotion is
satisfied by our solution, but in order to compute its energy we need theilgmwepresentation
of the inverse oK + ¢@,. Given the ambiguity of the latter (see (3.7) and (3.8)) brought abouteby th
termQy’, one may wonder whether the computation of the energy may be altered byetenpe
of such terms.

On the basis of the analogy with the previous section we are led to concludsuttteam-
biguous terms have to be identified as spurious ones. We have arguedthiba good hygienic
rule is to drop them. Keeping them may be useless in the best case and misieddegorst. In
any case we would like to modestly remark that, should we find that the Schweesentation
is defective in calculating the energy, the most logical course would berteatat, not to blame
the solution for not satisfying the equation of motion. Fortunately, anyhaswtitl not be neces-
sary. The Schwinger representation perfectly does its job, providefiaidled with care. In fact
we will show that spurious terms yield vanishing contributions if inserted ive@ing integrals,
while they may give nonvanishing (but ambiguous) contributions only if thgpear in divergent
integrands.

6. Concerning the identity g (K + qu) = |

Let us return to section 2 and egs.(3.2), (3.1) and (3.8). Applying ourepresentation we
get

Kea) = 5 SR ar K

£
—e (1
( K+%+s)

)
—1-e®___ ~ 6.1
Kta+e 61)

K+ a

. __£0, £ B £ . . . T
The expressiom % Kiaie = Ilmgéom iS a more appropriate way to wri@;; (it is ex-

tremely helpful to keep in mind the analogy wiil{r) in sec. 3). Itis of course formally vanishing,
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but to make any sense of such an expression one has to evaluate itdlatwos. For instance,
taking the trace, as in section 2, we are led to evaluate

8 {o0]
Tr|——| = s/ dte S g(ut 6.2
o]~ e o 62
Since, once agaimg(«) = 1, the limite — 0 is not continuous, and this depends on the fact that,
as we have seen many times, the integral in the RHS of (6.2) is (linearlypdivewhen the factor
e ¢ is replaced by 1. As a consequence the shift opegattt cannot be applied in a consistent
way in (6.2). In fact it is not clear what value one should assign to theeggjon

e &% <£/O°o dte‘“g(ut)) (6.3)

depending on whether we integrate first or apply first the operatiéfae to the integrand.

On the other hand, if (6.1) is inserted in a correlator (like the energy ohejerthe integrand
without the exponential factor decreases fast enough, then the oéthdt application o ¢% to
ﬁw is unambiguously 0. This can be seen by considering for instance the ifajj@antraction

Tr [02c e (Kto)g-ed ( ) (qu— 5%)cdc> } (6.4)

(K+a+¢
e*”ss/o dt e “Tr{(qu — dqu)e VK] (92¢(t + 1)cac(0))c,.,

—e e [Tate “((a(0) - 5%<o>>e*-fé“d”<s>> (0%c(t + 1)ede(0))c,

e‘g"fs/omdt e‘th(t) Bug( (t+1) —2e‘£‘95£/ dt e &t uldug(u(t+1))
where the ghost contribution is given by
G(t) = (d%c(t+1)(cdc)(0))g,,, = —2.
Now we can write eq.(6.4) as
o 0 g) g e / dte dug(u(t+l))
Sﬁse / dt 0ug u(t+1)) = 0. (6.5)

We note that this last result does not need any UV subtraction.

6.1 How to compute correlators with spurious terms

After these long preliminaries let us come to the would-be violation of the equaitimotion
due to the second term in the RHS of (6.1), pointed out in [3]. To this encwete

Yu — Yue =CQ— eiwem(% —dq,)Bcdc (6.6)
and applyQ to it. Using in particular
1 1 1
—&0, —&0,
i | =—g % 6.7
(e wrare) = krar i a e 67)
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and proceeding as in section 3.2 of [1], we find

QYue =Q <C(ﬂu - efeagm(% - 5%)5(350) (6.8)
o 1 B 1 B
=€ {1+(K+%+e) (cdqq,+0c6cn,)(K+%+8)B Kiate) K] (@ — dqu)cdc

1 1 £
=g % - (@0 a)
€ [(C% (K+qm+e)(% @)dc (K+%+s)+(K+%+s

— —l.,[lu7gl,Uu,g + e*“:as <(K_|_(nj_|_g)(% — 6(;1,)00"'0)

)c] (@ — dq@,)Bcdc

In a regular setting, that is when inserted in a correlator regulay this boils down to the usual
eomQuyy, = — Yy, and in particular the second piece in the RHS of the last line vanishessLet u
see what happens if we, nevertheless, insist in keeping (6.8) in thessipm of the energy. We
have

—<QUuQ’~I’u> - _<'~/—’u,eQ’~l’u,e> (6.9)
_ —E0e _
= (YuePuePue)+ (Puc€ ((K Tate) (@ 6%)Cdc>>
The second term in the RHS equals
—E0¢ 1 _ € _
e <(K+%+S)(qqJ oq,)Bcdc (K+%+s)(% oq,)cac) (6.10)

With the usual procedure we can write this s t; +15)

e (o [ dude e Tomenfaun{ (- I 26k 2T}). )

where the ghost part is given by

t1 . 2mt 2T L, 1t
4 (t1,t2) = ((Bcdc)(ty)(cdc)(0))e, = —ésm(%) - Fsmz(?l). (6.12)
Let us show now that (6.11) reduces to the form
g ¢ <£/ dse‘gs’f(s)> (6.13)
0
whereJ(s) — const for larges and the integral is UV finite.
Denotingx = %, Eq.(6.12) can be rewritten as
e [ L i dsg(s)\2 1
no, fis _ Y L2
e '7:7/0 dssz/0 dx£(x) e g(s){( oS ) +ZGS(2nx)}, (6.14)
wheref) = £, and
—1+ cog27x) + IXsin( 27X
£(3) = ((BoaC)(x) (cdc) (0))c, = OHZ0 H TOEINI 6.15)

i
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Sincejbldxﬁ(x) = —%, the term with ndGs is given by

_Zinzﬁ /Ooods§ e‘ﬁsg(s)<— 6;?;3))2 (6.16)

As g(s) ~ %S in the UV we are in the case of eq.(8.13) of [2] and so the UV contributioishas
for 7 — 0. In the IR we are in the case of eq.(8.17) of [2] and so the IR contribvoishes too.
It can be easily proven that

3/01dxéo(x)G§(2nx) = i/oldy/oydxsinnxsinnysinn(x—y)
(G2 + GE(2m(x— y) + G(2n)) (6.17)

where the expression in the RHS is the same as eq.(3.7) of [2]. Theveddnave
. o ) 1
e 1% <;ﬁ / ds€ e %g(s) / dxg(x,O)Gg(znx)>
0 0
ron (1 [ ; 4 (r oy oo . :
= e 1% <n/ ds€e ”Sg(s)—/ dy/ dxsinmxsinmysinr(x —y)
6 Jo TJo 0

- (G¥2mg + GA(2m(x~y)) + G¥(2my) ) ) (6.18)

We can now avail ourselves of the results in [2]. The integration »egrdy leads to an integrand
in sthat behaves like a constant for largdf one abstracts from the facter 5. Thus we have
obtained (6.13). Under these conditions the limit flor- 0 of thesintegral is discontinuous and
we are not allowed to exchange% with the integration. We do not know what value should be
assigned to (6.13). As a consequence the additional piece in RHS ot&hB8dt be assigned an
unambiguous value without ad hocprescription.

With anad hocprescription we can still obtain a finite result. If, for instance, we first multiply
f by the result of the integration and subsequently appfifi we obtain—28, wheref is the
number introduced in [2], see also sec.2 above. This result is the sanme@wetiobtained by [3].
But one should not forget that it is prescription-dependéfie remark, in addition, that the term
(6.18) appears in the RHS of eq.(6.9) together With ¢ Y. Yue). The latter is a UV divergent
term (in [4] it is even gauge-dependent) and needs a UV subtractioch wie recall, carries some
arbitrariness into the problem. For instance, one could choose the U\astidtrin such a way as
to kill the contribution of—2f3 altogether and there would be no violation of the EOM. Therefore
it is not even clear what the would-be violation of the EOM means.

The ambiguity intrinsic in this problem reminds us of the discussion after eq)(h.3@c. 3.
There, by integrating a vanishing distribution over a non test function,auédmbtain a nonva-
nishing result. This is no accident. The nonvanishing of the second terne iRHS of (6.9) is
analogous. The string fiele €% K+(;J+£(% — 0q) plays the role of the vanishing distribution and
Yue the role of the singular test function. The only difference here is thatitfgrilgrity comes
from the IR, because of the inversion of roles introduced by the Sclevimgresentation. In this
regard we can be more precise. If we strip (6.10) ofdgHactor in the numerator, what remains
represents the string fieligll—((aj — dq,) contracted with itself, which can be interpreted as the

T@ute
‘norm’ square of this string field, in the limé& — 0. Well, the above results tell us that this ‘norm’

17



Lumps in SFT Loriano Bonora

is infinite. It is this infinity that multiplied by the stripped facterallows us to obtain the above
finite result. This clearly confirms the singular nature/Qf; as a test state.

Itis instead possible to derive a prescription-independent (and stibtrandependent) result,
even taking into account the spurious term, provided one proceedstimeaneay. Let us rewrite
®f, eq. (1.24), using the new representatidis, ) = Y, — Y5, whereys;, in thee — 0 limit, is
the tachyon vacuum solution defined in [2]. We get

Que = _wu,sll’u,s‘*‘eisag <(K+%+£)(% - 6%)06(3)

Quiy = —yiuy (6.19)

20(g,€) = —D(e,8)D(g,€) + & % <(K+¢h+e)<%_ 6%)cdc>

where2® = Q® + Y& P + dys. Moreover
—(P(e,€)2B(¢,¢)) = (P(g,6)P(¢£,€)P(¢€,€)) (6.20)

+(D(g,)e % (W’fﬂﬂ'f)(% — 5%)cc?c>>

If we use the just defined representation, the second term in the RHE equa

& e (o (@ dmIede)) e M (o (@ Sm)ede))
— B s (£ SR)BE (= 50)e0C)
= 2B e s (A BBIC s (A 5)00C)
—effde<(K +;+8) Bodc (K+;+£) (@ — 3qu)cdc) (6.21)

In (6.21) there is no need of UV subtractions. The last two terms in the RH&8,g@spectively,
! ) (@ — oq@,)cac) (6.22)

e—£05< €
(K+a,+¢€) (K+@,+¢€
(9uTg(UT)) 27t })
s)

(@ — dq@,)Bcdc
— g €% / dtydt, e &2~ £t1g<t17t2)u g(UT){<_ Q(T GZUT( T )

5 >
= e % <"/ dss’-/ dx& (x) e (A~ X)+sx)g(s){( Os9(
[

( +1GZ(27D<)}>
e % /0 ds§/0 dx e19¢ (1-x) es%xg(S){( oS )) 3 GZ(Z”’Q})

and
e—g‘k(LBcdc L( —dq,)cac) (6.23)
(K+aq+¢) Krare) v o '
805 (8 / dtldtz e etr— Etlg(t t2>t aug(UT)>
_ g@s (8 dT T/ dx e—T(s(l—x)-i—ex)éa(X)uaug(u'r)>

—e”””( o / dss’-e’”/ dx&(1— x)eSZUXé’sg())
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As we have learnt in section 2 these quantities must be evaluated in the . We are by now
very familiar with this type of integrals and can easily come to the conclusion dthtamgular
integrations are finite even without te&z * factors so that in the limit, & — 0 the integration is
continuous ing, € and such factors can be dropped. Thus, using always the samseaeiation,
the former integral is just-2(3. The latter is the same as eq.(4.43) of [3]. It is convergent both in
the UV and the IR.

So we find

lim (®(e, £)e % ((K+qb+e)(% — 6%)cdc>> =-2B8+28-0=0

This is a prescription-independent (and subtraction-independent), réee reason being that the
overall sintegrand has, in the limi¢ — 0O, the right convergent behaviour for largén order to
guarantee continuity ia also ate = 0ll. We deduce thathis is the right way to compute the lump
energy and, as by now should be obvioute spurious term does not contribute to it

The terml (&) = e &% K+(‘;+g(% —oq@,)cdc in the RHS of (6.20) is clearly similar to the
spurious terms considered in connection with the solution to the Einstein EOMtiorsS. It
violates the principle of continuity and (as a natural consequence) it is amisgHowever when,
in spite of this, it is taken into account in our calculation of the energy outlindokimtroduction,
it yields a (non-ambiguous) vanishing contribution, as we have just shbgcause the integral
it is inserted in is convergent (even without t&el® factor). When inserted into non-convergent
integrals, in the limitt — 0 it gives rise to an ambiguous term, see (6.13) above. In a well-defined
setting, provided by distribution theory, the nature of this term is clear: it puaicus term and
should notbe taken into account. In the language of distribution thegfyand ¢, . are not good
test states because of their asymptotic behaviors, but their difference is.

7. Good test string fields

So far we have seen few example of good test states: one is the statel diefntieitly by
eg.(6.4), another is in the second line of eq.(6.20) and others, possilthe idiscussion of the
CSO. A guestion one might ask is whether there are enough good testistdtesheory. This is
connected with the problem of Fock space states. It is customary in SFTifpaetring field’s
properties by contracting it with Fock space states, the latter being coediddarge enough set
of states (a completeness). The question of whdthey = e €% K+§h+£ (@, — d@,)cdc when con-
tracted with a large enough set of states vanishes must be formulated iptherégte way. These
states cannot be ‘naked’ Fock space (see some examples of themldad8{)se such stataese not
good test statesOnce again it is worth recalling that if we contract a formally vanishing distrib
tion with a non-test state we can get something nonvanishing. First of aliates sve are looking
for must be such that the resulting contractions With) be nonsingular (with respect to singular-
ities due to collapsing points). But, especially, they must be characterizieddgyable behaviour
in the UV and, ignoring the overa#i~¢t factor, in the IR. Itis in fact self-evident thatl the states
with such properties annihilatge). The only possibility of getting a nonzero result is linked, as

lwhat happens here is that we have the difference of two integrals wieaivargent (without the*ﬁs) but the
divergences cancel each other in the limit- 0.
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usual, to correlators characterized by IR linearly divergent integratb@ut the exponentiad—¢t).
The question we have to ask is whether there are ‘enough’ such stagesoMd like to show in
the sequel that they are plentiful.

Consider states created by multiple products of the fadtag,, £) = K+%+£(¢h —o@,) and
contract them with (¢). More precisely, let us define

Wa(@, &) = H(q, &)" 1BcdcH(q, £)BcdcB, n>2 (7.1)

Contracting withl"(¢): (Wn(qu,€),T(€)), we obtain a correlator whose IR and UV behaviour
(before thee—%¢ operator is applied) is not hard to guess. The correlators take the form

e fone (52 () 0o

where the notation is the same as in section 42 2uT), but we have tried to make it as compact
as possible. The angular variablghave been dropped thandGs (see, for instance, (1.19) where
they are explicitly written down). Using the explicit form & (1.20), expanding the latter with
the binomial formula and integrating over the angular variables, one gets

/rldxe(;k stkf o rr:ll : |—|pI - (7.3)

the labell counts the number of cosine factors in each term. Hemge positive integral labels
which come from the discrete summationGg; pi(ns,...,n;) are polynomials linear im;. Next,
R andQ, are polynomials im; which come from the integration in the angular variables. Every
integration inx; increases by 1 the difference in the degre®o&ndR, so that generically d€gy —
dedd = n. Butin some subcases the integration over angular variables give riserte¢ker deltas
among the indices, which may reduce the degre@, 050 actually the relation valid in all cases is
dedQ, > dedd, but one has to take into account that the number of angular variablestorireed
over decreases accordingly.

We are now in the condition to analyze the UV behaviour of (7.2). Let usiden for instance,
the first piece

dsg($)\ "t
~ [asetgd) ( Sg(sz)) (7.4)
8

Since in the UVg(3) ~ \}é it is easy to see that the UV behaviour of the overall integrand is
~S3, independently ofi. As for the other terms, let us consider in the RHS of (7.3) the factor that
muItipIieS% (for | > 2). Settings= 0, the summation ovem,...,n_; is always convergent, so
that the UV behaviour of each term in the summation is given by the f@é{olwith 2<I <k It
follows that the most UV divergent term correspondbk+o0, ~ ; Since in (7.2) this is multiplied

by

da(s n—k+1
o3 ()

~—

20



Lumps in SFT Loriano Bonora

we see that the UV behaviour of the generic term in (7.2) is at most as simgmas*% In
conclusion the statéd,,, when contracted with (¢), give rise to the same kind of UV singularity
~s73. Now, for any two such states, sty andW,y, we can form a suitable combination such
that the UV singularity cancels. In this way we generate infinite many state®savhich, when
contracted with (&), give rise to UV convergent correlators.

Let us consider next the IR propertiessst 1). All the correlators contain the facters which
renders them IR convergent, but we have learnt that the crucialdpeptiies (in the limitt — 0)
are obtained by ignoring this exponential factor. So, in analyzing the ®Bgpties we will ignore
this factor. The first term (7.4) is very strongly convergent in the IRabeedsg(3) ~ é while
g(5) — 1. For the remaining terms let us consider in the RHS of (7.3) the factor that haslt@éf.
(for| > 2). To estimate the IR behaviour it is very important to know the degree eliféer between
the polynomial€Q, andR. Above we said that this difference is always nonnegative. In principle
it could vanish, but from the example with= 2, see [2], we know that there are cancellations and
that in fact the difference in degree is at least 2. If this is so in geneeatan conclude that the IR
behaviour of the summation in the RHS of (7.3) with fixesl~ s% However, in order to prove such
cancellations, one would have to do detailed calculations, which we wish i laee. So we will
take the pessimistic point of view and assume that, at least for some of the tleRs = ded?
(in which case there remains only one angular integration). In this cas®theHaviour of the
corresponding term cannot decrease faster féh%éi This has to be multiplied by ﬁ and by
the IR behaviour of (7.5). This means that the least convergent term watthkiin(7.3) behaves
as~ ﬁ Sincek < n-+ 1, we see that in the worst hypothesis in the integral (7.2) there can be
linearly divergent terms, before thee%¢ operator is applied. If this is so the UV convergifg
states are not good test states. However we can repeat for the |Rasitiggiwhat we have done
for the UV ones. Taking suitable differences of thg's (this requires a two steps process, first for
the linear and then for the logarithmic IR singularitigs we can create an infinite set of states,
Qp, which, when contracted with(¢), yield, before the application @ £%¢, afinite result. Upon
applyinge¢%¢ they of course vanish. These are therefore good (and nontrivia§tsges and, on
applyinge ¢%¢, they give 0, i.e. suck, annihilatel ().

We remark that in eq.(7.1) the presence @fi H(q,, €) is not essential, because in estimating
the IR behaviour we have not counted #1@S factor. Usingﬁ everywhere instead q{ﬁ,
would lead to the same results. This means that contractin@ tlstates among themselves (keep-
ing the same ghost factor) leads to finite correlateith or withoute. This, together with the
property of annihilating (¢), is a distinctive feature of good test states.

The Qn(qu,0) are however only a first set of good test states. One can envisagdfalthah
other such states. Let us briefly describe them, without going into too maaysdé-or instance,
let us start again from (7.1) and replace the fiigtg,, 0) factor with Kleux?k (the termdg
can be dropped). In this way we obtain a new state depending on a nevainédgelk. However
replacingX? with X% is a too rough operation which renders the calculations unwieldy, beitause

breaks the covariance with respect to the rescaling?. It is rather easy to remedy by studying

**In the, so far not met, case where a $aggymptotic contribution appears in the integrand one would need a three
step subtraction process.
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the conformal transformation &%. The following corrected replacements will do:

ux? = u (X2+2(Iogu+ y)) =@ = (Agl)
ux* — u(X*+12(logu+ y)X? + 12(logu+ y)?) = @

R
uxX® — u (Z)(Zk(fkg:)lll (logu+y) X2k‘2i> = ¥ (7.6)

The role of the additional pieces on the RHS is to allow us to reconstruct thatiees ofg(s) in
computing the correlators, as was done in [1].

Now let us denote bwﬁk) the n-th state (7.1) wherey, — dq, in the firstH(q,,0) factor is
replaced byngk). Contracting it withl"(€) it is not hard to see that the term (7.4) will be replaced

by

N « iis S 0sg(§)>n+k
/0 dse s”g(2)< o) (7.7)
with analogous generalizations for the other terms. It is evident from {f7Taf the UV behaviour
becomes more singular with respect to (7.4) while the IR one becomes marrgent. This is a
general property of all the terms in the correlator. Thus fixkrvge will have a definite UV singu-
larity, the same up to a multiplicative factor for su&”. Therefore by combining a finite number of
them we can eliminate the UV singularity and obtain another infinite set of UVergent states
cpﬁ,k) for anyk. In general they will be IR convergent (IR subtractions may be nacgésrk = 2).

It goes without saying that the previous construction can be furthesrgkred by replacing
in (7.1) more than onX? factors with higher power¥%.

Let us end this section by suggesting another set of states that may hie asst to construct
good test states with a subtraction procedure as above. Let us costsigar containing a certain
number of derivatives ofy,

1 1
K+ +e¢)(2u

Wnid( €)= ¢ )kak% Wno1(q, €) (7.8)

By contracting them witi™(¢) we obtain correlators that, before applyieg®®¢, are defined

by integrands in which the UV singularities are worse (and depenk),orhile the IR seem to
improve by a factor % with respect td¥,. However the derivativéX, hitting the propagator

Gs, increases the degree Bf. The two effects seem eventually to compensate each other, but
the exact IR asymptotic behaviour is more difficult to analyze in this case,euthik previous
examples. For this reason we leave these states as a suggestion to bedainatyz future.

8. Spurious terms: comments and conclusions

Let us summarize the results we have found. We think we have abundamtiy gt section 6
that the ternf (&) = e % ﬁw(% —oq@,)cdcin (6.4,6.19), when inserted in correlators, is either
identically vanishing or ambiguous. The first case occurs when it is imsereeregular correlator,

i.e. in a correlator which is convergent even when the faetér coming from the Schwinger
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representation % is replaced by 1, which implies that the resulting integral (witheh&
factor) is continuous a = 0). This shows that our calculation of the energy in [2, 4] is not affected
by the terml"(g), as one might have feared (see section 3). That also means that them@&ahw

representation of an inverse is correct, provided it is used in the tovesc

The second case is when the correlator is at least linearly diverge® IR fmeaning that the
correlator is divergent when the fac®r® coming from the Schwinger representatiork% is
removed, which implies that the resulting integral (with €né" factor) is discontinuous at= 0) :
the typical situation is represented by eq.(6.13). In this case we nestlatprescription in order
to extract a finite value from the integral, finite value which is originated, abave shown, by
multiplying a zero bye. It is clear that this is not the right way to compute the energy of anything

(neither solutions, nor non-solutions)

The formal presence of the ter@f; in the RHS of (3.8) or ok €0 K+§h+£ in the RHS of (6.1)
is simply the spy of the fact that we are evaluating the identity (3.2) on a discounsncorrelator.
If the correlator’s integrand is convergent enough any such addiﬁq@}&f)l‘f is irrelevant and
ﬁ is correctly represented by (3.1). The appearan&obr e &% R +(fh — becomes a pathology
of the Schwinger representation which may show up if the problem is noiufleted in the proper
setting. The appropriate setting is that of distribution theory. In this franetherspurious terms

are identically vanishing and there are no violations of the equation of motion.

All these conclusions are based on explicit evaluations and are unqudsédonThis said,
it would be nice to have a general framework for these problems, a foatializof the rules
and procedures we have used above that can be applied in genetthle Wibment, to our best
knowledge, the latter does not exist. The analogy with the case illustratedtiarsé has been
instrumental in understanding the nature of the lump solution problem; the treaimeea was
based on the theory of distributions. We do not seem to have an analtgoury in the case
of string fields, but no doubt this is the right instrument we need in ordeetd the singularity
problems inherent in the search for solutions in SFT.

We cannot hope to solve this problem here. But we think we have clarigeidgbe at least on
one example (the relevant example for our present purposes), fHat)isAn ordinary distribution
is just a linear continuous functional on a space of test functions. Waeanistically extend this
definition to string fields. A string field distribution is a linear functional on thacgpof test string
fields. In the previous section we have introduced a large set of test.sTdtey are well defined
and contain as a particular case the good test states mentioned before.lV¢hés evaluated
on them it gives 0. Therefore in distribution theory this expression is idahticanishing. Said
otherwise, it is correct to identify(¢) with the zero in distribution theory.

Invoking distribution theory in order to get rid of the spurious terms in thexggn of motion
(and elsewhere) may seed hocat first sight, but the interpretation in terms of distribution theory
provides a consistent regularization we need in order to make sense fuitieb. As we have
pointed out in section 4, this is a familiar procedure in theoretical physicslar ¢w carefully define
various physical solutions. Apart from the example in section 4, brdo@@s in supergravity are
often characterized by a metric that explodes when we approach thelbcation in the transverse
direction, as it depends on some negative power obeing the transverse distance. However the
relevant physical quantities, like the energy density, are finite. Therslysome way to give an
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unambiguous meaning to such solutions: it is to interpret them in the framewaliktobution
theory.

A formalization of the idea of string field distribution (beyond the examplE(af) studied in
detail above) is possible, but, as we pointed out above, to our bestdahgevthe relevant formalism
has not been developed so far. Perhaps the right mathematical settifigrésidiy the vector
distribution theory. The theory of vector distributions was developed hydrag Schwartz, [24].
The basic objects are a topological vector space and the space ofrtetbrig. A distributions is
a linear continuous map from the latter to the former. More practically we cak dfitest vector
functions as tensor products of ordinary scalar test functions by ngeata a vector distribution
as a space dependent vector, while the evaluation on a vector test fuisctiee ordinary scalar
product followed by an ordinary integration. In our case the expreg@f@a should be regarded
as a vector distribution. It goes without saying that much work has to be ioorder to clarify
definitions and show applicability of such formalism in the context of SFT.
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