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The correspondence between classical extra dimensional geometry and quantum behavior typical

of the AdS/CFT has a heuristic semiclassical interpretation in terms of undulatory mechanics and

relativistic geometrodynamics. The recurrence in time and space of ordinary particles enters in

fact into the equations of motions in formal duality with the cyclic extra dimension of a Kaluza-

Klein theory. The kinematics of the particle in a generic interaction scheme can be described

as modulations of the spacetime recurrence and encoded in corresponding geometrodynamics.

The quantization is obtained semiclassically by means of periodic boundary conditions, so that

the interference of the classical paths with different windings numbers associated to the resulting

recurrence turns out to be described by the ordinary Feynman Path Integral. This semiclassical

description applied to Quark-Gluon-Plasma yields basic aspects of AdS/QCD phenomenology.
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AdS/CFT from Elementary Cycles Donatello Dolce

According to Witten [1], in AdS/CFT “quantum phenomena [...] are encoded in classical

geometry”, without however involving any explicit quantization condition. In this paper we inves-

tigate the origin of the “classical to quantum” correspondences of XD theories. It will be intuitively

justified in terms: of Klein’s original attempt to derive quantum mechanics in terms of a compact

eXtra-dimension (XD) with Periodic Boundary Conditions (PBCs); of Kaluza’s and Nordström’s

XD geometrical description of gauge interactions; of de Broglie’s assumption of spacetime recur-

rence associated to every particle. This yields a semiclassical description of elementary particles

quantum behavior defined in recent papers [2, 3]. Here we summarize some results of [4].

In the atomistic description characterizing modern physics, every physical system is repre-

sented in terms of a set of elementary particles and their local retarded relativistic interactions.

QM tells us, through the Planck constant, that a spacetime recurrence of instantaneous periodicity

T µ = {Tt ,~λx/c} is associated to every elementary particle of four-momentum p̄µ = {Ē/c,−p̄}.

As noted by de Broglie, the spacetime recurrence of a particle of mass M̄ is fully characterized by

the Compton time Tτ = h/M̄c2, i.e. the intrinsic periodicity of the proper time τ , or equivalently

by the quantum recurrence s ∈ (0,λs] of the worldline parameter s = cτ , with λs = cTτ (Compton

length). In a generic reference frame the spacetime recurrence resulting from this worldline pe-

riodicity is in fact described by the covariant relation TτM̄c2 ≡ T µ p̄µc ≡ h. We have performed

a Lorentz transformation cTτ = cγTt − γ~β ·~λx, Ē(p̄) = γM̄c2 and p̄ = γ~βM̄c. This means that

the classical-relativistic dynamics of a particle described by its 4-momentum p̄µ = h̄ω̄µ/c can be

equivalently encoded in retarded modulations of the corresponding local spacetime periodicity Tµ .

In undulatory mechanics elementary particles are described in terms of phasors or waves (“periodic

phenomena”) in which the spacetime coordinates enter as angular variables. Their periodicities de-

scribe the kinematics of the particle though h̄. That is, every system in physics can be consistently

described in terms of modulations of elementary spacetime cycles with minimal topologies S1.

We want to impose the intrinsic periodicity T µ of elementary particles as a constraint. This

represents a semiclassical quantization condition. A particle with intrinsic periodicity is similar

to a “particle in a box”. Through discrete Fourier transform the persistent periodicity T µ directly

implies a quantization of the conjugate spectrum p
µ
n = np̄µ ; n is the quantum number associated

to the topology S
1. The quantization of the energy spectrum associated to the persistent time

periodicity Tt is the harmonic spectrum En = nĒ = nh/Tt . A free bosonic particle can be therefore

represented as a one dimensional bosonic string Φ(x) vibrating in compact spacetime dimensions

of length T µ and Periodicity Boundary Conditions (PBCs — denoted by the circle in
∮

):

S
λs =

∮ T µ

d4xL (∂µΦ(x),Φ(x)) =
∮ T ′µ=Λ

µ
ν T ν

d4x′L (∂ ′
µΦ′(x′),Φ′(x′)) . (1)

As known from string theory or XD theory, PBCs (or combinations of Dirichlet and Neumann BCs)

minimizes the action at the boundary so that all the relativistic symmetries of (1) are preserved. This

is a consequence of the fact that relativity fixes the differential structure of spacetime whereas the

only requirement for the BCs is to fulfill the variational principle. The expansion in harmonics of

a field/string vibrating with persistent periodicity is Φ(x) = ∑n φn(x) = ∑n An exp[− i
h̄

pnµxµ ].

To check the covariance we use a Lorentz transformation xµ → x′µ = Λν
µxν as a generic trans-

formation of variables in the free action (1) so that the transformed boundary of the resulting

action yields a solution with transformed periodicity T µ → T ′µ = Λ
µ
ν T ν . This describes the four-

2



P
o
S
(
I
C
H
E
P
2
0
1
2
)
4
7
8

AdS/CFT from Elementary Cycles Donatello Dolce

momentum p̄µ → p̄′µ = Λν
µ p̄ν of the free particle in the new frame, according to p̄′µcT ′µ = h. That

is, T µ transforms as a contravariant tangent 4-vector with the relativistic constraint induced by the

underlying Minkowsky metric 1
T 2

τ
= 1

Tµ

1
T µ . This is the geometric description in terms of periodici-

ties of the relativistic dispersion relation M̄c2 = p̄µ p̄µ . Thus the harmonic energy spectrum of our

system in a generic reference frame is En(p̄) = nh/Tt(p̄) = n
√

p̄2c2 + M̄2c4, which is the energy

spectrum prescribed by ordinary second quantization (after normal ordering) for the single mode of

periodicity T (p̄) of a free bosonic field. This is a first semiclassical correspondence with ordinary

QFT. We also note a dualism to Kaluza-Klein (KK) theories. In the rest frame the proper time

periodicity (compact worldline) describes a quantized rest energy spectrum, i.e. a mass spectrum,

En(0)/c2 ≡ Mn = nM̄ = nh/λsc = nh/Tτc2, similar to a KK tower of compactification length λs.

As also noted by Einstein, a relativistic clock is “phenomenon passing periodically through

identical phases”. By assuming intrinsic periodicity every isolated particle can be therefore re-

garded as a reference clock. As in the Cs atomic clock whose reference “tick” of periods 10−10s is

fixed by an electronic energy gap, an isolated particle of energy Ē has regular “ticks” of persistent

periodicity Tt that can be used to define the unit of time. The so-called internal clock of an electron

Tτ ∼ 10−21s has been observed in a recent experiment [5]. The heavier the mass of the particle, the

faster the periodicity (Ē ∼ 1 TeV → Tt ∼ 10−27s ). In a generic point x = X , a relativistic interac-

tion of a particle can be characterized by the local retarded variations of four-momentum w.r.t. the

free case p̄µ → p̄′µ(X) = ea
µ(x)|x=X p̄a. Through h̄, interaction can be equivalently encoded by local

retarded modulations of the internal clock of the particle T µ → T ′µ(X)∼ e
µ
a (x)|x=X T a, that is by lo-

cal “stretching” the compactification spacetime dimensions of (1). Therefore a generic interaction

can be equivalently encoded in a locally deformed metric ηµν → gµν(X) = [ea
µ(x)e

b
ν(x)]|x=X ηab.

This description can be easily checked by using the local transformation of reference frame dxµ →

dx′µ(X)= ea
µ(x)|x=X dxa as substitution of variables in the free action (1), [3, 4]. The resulting action

with deformed metric gµν(X) describes a locally modulated solution of periodicity T ′µ(X): we pass

from a free solution of persistent type φn(x) ∝ exp[− i
h̄

pnµxµ ] to the interacting solution of modu-

lated type φ ′
n(x) ∝ exp[− i

h̄

∫ xµ dx′µ pnµ(x
′)]. Note also that in our formalism the kinematics of the

interaction turns out to be equivalently encoded on the boundary, a la holographic principle. Such a

geometrodynamical description of generic interactions is of the same type of General Relativity. In

a weak Newtonian interaction, the corresponding energy variation Ē → Ē ′ ∼
(

1+GM⊙/|x|c
2
)

Ē

implies, through h̄, a modulation of time periodicity Tt → T ′
t ∼

(

1−GM⊙/|x|c
2
)

Tt , i.e. redshift

and time dilatation. If we also consider the variation of momentum and the corresponding modu-

lation of spatial periodicity, the resulting metric encoding the Newtonian interaction is actually the

linearized Schwarzschild metric. Similar to Weyl’s original proposal, gauge interaction can be ob-

tained by considering local variations of flat reference frame dxµ(x)→ dx′µ ∼ dxµ − edxaω
µ

a (x).

Parametrizing by means of a vectorial field Āµ(x) ≡ ωa
µ(x) p̄a, the resulting interaction scheme is

actually p̄′µ(x)∼ p̄µ − eĀµ(x), see [3] for more details.

Now we summarize the correspondence to ordinary relativistic quantum mechanics. A vibrat-

ing string with modulated periodicity is the typical classical system that can be described locally in

a Hilbert space. The modulated harmonics of such a string form locally a complete set w.r.t the cor-

responding local inner product 〈φ |χ〉. The harmonics defines locally a Hilbert base 〈x|φn〉= φn(x).

Thus a modulated vibrating string, generic superposition of harmonics, is represented by a generic
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Hilbert state |φ〉= ∑an |φn〉. The non-homogeneous Hamiltonian H and momentum Pi operator

are introduced as the operators associated to the 4-momentum spectrum of the locally modulate

string: Pµ |φn〉 = pnµ |φn〉, where Pµ = {H ,−Pi}. From the modulated wave equation, the

temporal and spatial evolution of every modulated harmonics satisfies ih̄∂µφn(x) = pn(x)φn(x),

thus the time evolution of our string with modulated periodicity represented by 〈φ |χ〉 is given by

the ordinary Schrödinger equation ih̄∂t |φ〉 = H |φ〉. Moreover, since we are assuming intrinsic

periodicity, this classical-relativistic theory implicitly contains the ordinary commutation relations

of QM. This can be seen by evaluating the expectation value of a total derivative ∂xF(x), and con-

sidering that the boundary terms of the integration by parts cancel each other owing the assumption

of intrinsic periodicity. For generic Hilbert states we obtain:ih̄∂xF(x) = [F(x),P] and ih̄ = [x,P]

for F(x) = x. The correspondence with ordinary relativistic QM can also be seen from the fact that,

remarkably, the classical evolution of such a classical vibrating string with all its modulated har-

monics is described by the ordinary Feynman Path Integral (we are integrating over a sufficiently

large number N of spatial periods so that the Vx =Nλx is bigger than the interaction region) [2, 3, 4]

Z =
∫

Vx

Dxexp[
i

h̄
S (t f , ti)] . (2)

As usual, the S is the classical action of the corresponding interaction scheme, with lagrangian

L =Px−H . This result has a very intuitive justification in the fact that in a cyclic geometry such

as that associated to the topology S
1, the classical evolution of φ(x) from an initial configuration

to a final configuration is given by the interference of all the possible classical paths with different

windings numbers, i.e. without relaxing the classical variational principle. Thus the harmonics of

the vibrating string/field φ(x) can be interpreted semiclassically as quantum excitations.

In this formalism it is straightforward to note that the cyclic worldline parameter enters into

the equations in remarkable analogy with the cyclic XD of the KK theory [4]. The solution φ can

be in fact formally derived from a corresponding massless KK field by identifying the cyclic XD

with a worldline parameter. For this reason we address the cyclic worldline parameter s as “virtul

XD”. If we in fact denote the XD and its compactification length with s and λs in a KK massless

theory dS2 = dxµdxµ − ds2 ≡ 0, and we identify the XD with the worldline parameter s = cτ we

obtain our 4D theory ds2 = dxµdxµ with cyclic worldline parameter of periodicity λs, and thus

the spacetime periodicity T µ by Lorentz transformation. In this case the quantized mass spectrum,

the analogous of the KK tower, Mn = nM̄ = nh/λsc is directly associated to the periodicity λs of

worldline parameter s though discrete Fourier transform, whereas in the KK theory Mn is obtained

indirectly through the EoMs. That is, by assuming a VXD, the KK modes are virtual in the sense

that they are not 4D independent particles of mass Mn, they are the excitations of the same 4D

elementary system. Such a collective description of the KK mode is typical of the holographic

approach, where however a source field φΣ can be used as BCs to integrate out the heavy KK

modes and achieve an effective description of the XD theory: S 5D(s f ,si) ∼ S Holo
Φ|Σ=eφΣ

(s f ,si) +

O(Ee f f /M̄). This also means that, in analogy with the formalism of Light-Front-Quantization,

the KK modes form the base |φn〉 of a Hilbert space, the evolution along the XD of a KK field

is ih̄∂s |φ〉 = M c |φ〉, where the mass operator M |φn〉 = Mn |φn〉 satisfies implicit commutation

relations [M ,s] = ih̄ owing the cyclic behavior of s. By means of the duality to XD theories, the

generic interaction scheme p̄′µ(X) can be equivalently encoded in a corresponding deformed VXD

4
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metric GMN =

(

gµν 0

0 1

)

(this description should include dilatons or softwalls in the case of finite

VXD). Under this dualism gauge interactions turn out to be encoded in a virtual Kaluza metric.

By combining the correspondence between classical cyclic dynamics and relativistic QM [2],

the geometrodynamical formulation of interactions as modulation of spacetime periodicity [3] and

the dualism with XD theories in the holographic description, we obtain that the classical configu-

rations of the modulated harmonic modes of φ in a curved XD background encodes the quantum

behavior of the corresponding interaction scheme. This correspondence can be summarized by the

following relation (with implicit source term [4])

∫

Vx

Dxexp[
i

h̄
S

′]! exp[
i

h̄
S

Holo
Φ|Σ=eφΣ

] . (3)

Indeed, the description of physics in terms of elementary cycles pinpoints, at a semiclassical level,

the fundamental correspondence between classical XD geometry and 4D quantum behavior of

AdS/CFT, [1]. To check this we consider the example of the Quark-Gluon-Plasma (QGP) freeze-

out, in which the classical dynamics of the interaction scheme are described by the Bjorken Hy-

drodynamical Model, [6]. During the exponential freeze-out the 4-momentum of the QGP fields

decays exponentially with the laboratory time, i.e. with the proper time: Ē → Ē(s) = e−ks/cĒ.

In terms of QCD thermodynamics, k represents the gradient of Newton’s law of cooling. Thus,

in the the massless approximation (E ≃ cp), the 4-momentum of QGP during the freeze-out de-

creases conformally and exponentially p̄µ → p̄′µ(s) ≃ e−ks/c p̄µ . Equivalently, through the Planck

constant, we have that the spacetime periodicity has an exponential and conformal dilatation T µ →

T ′µ(s)≃ eks/cT µ .According to our geometrodynamical description of interaction, this modulation

of periodicity is therefore encoded in the substitution of variables dxµ → dx′µ(s) ≃ e−ksdxµ .The

QGP freeze-out is thus encoded by the warped metric ds2 = e−2ks/cdxµdxµ . By treating the world-

line parameter s as a VXD, the exponential dilatation of the 4-periodicity during the QGP freeze-

out of massless fields (dS2 ≡ 0) can be equivalently encoded in the virtual AdS metric dS2 ≃

e−2ks/cdxµdxµ −ds2 ≡ 0. The energy of the QGP during the freeze-out is therefore parametrized,

though the Planck constant, in terms of the time periodicity Tt(s) = eks/c/k = h/E(s). This is for-

mally the conformal parameter z(s) ≡ Tt(s) which in fact describes the inverse of the energy in

ordinary AdS/CFT. It varies from the initial state (e.g. after the formation in a collider experiment)

characterized by small time periodicity TUV
t = h

Λ = eksUV /c

k
, to a state characterized by large time

periodicities T IR
t = h

µ = eksIR/c

k
. The massless approximation means infinite proper time periodicity,

i.e. infinite VXD. Thus the AdS geometry encoding the freeze-out has no boundaries. Indeed, if

we consider the propagation of a 5D gauge theory with 5D bulk coupling g5 in an infinite VXD, the

effective coupling of the corresponding 4D theory behaves logarithmically w.r.t. the infrared scale

g2 ≃
g2

5k

log
µ
Λ

. This reproduces the quantum behavior of the strong coupling constant as long as we

suppose 1
k
∼

Ncg2
5

12π2 , [7]. In agreement with the AdS/CFT dictionary, the classical dynamics associ-

ated to an infinite VXD actually encodes the quantum behavior of a conformal theory. Indeed this

has an intuitive justification in terms of undulatory mechanics and relativistic geometrodynamics.

In our description, a massive system is characterized by a finite proper time periodicity λs. Thus, if

we want to describe a QGP of massive fields we must assume a compact VXD. Through the holo-

graphic approach [8] with small IR scale, the classical configurations on this compact warped VXD

5
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is effectively described by ΠHolo(q2) ∼ − q2

2kg2
5

log
q2

Λ2 . This approximately matches the two-point

function of QCD and the asymptotic freedom 1
e2

e f f (q)
≃ 1

e2 −
Nc

12π2 log
q
Λ . This quantum behavior has

been obtained without imposing any explicit quantization except BCs. We note that in a consistent

description of the massive case we must also abandon the conformal behavior between the tempo-

ral and spatial components (Tt 6= λx/c). This means the AdS metric must be consistently deformed,

for instance, by introducing dilatons in the metric or “soft-walls”. We know that these geometries

reproduces a realistic hadronic spectrum. Similarly to Veneziano’s original idea of strings, in our

description the hadrons are indeed energy (quantum) excitations, i.e. virtual KK modes, of the

same fundamental string vibrating with characteristic compact worldline parameter and deformed

spacetime encoding the interaction. Such a geometrodynamical description of the masses is rele-

vant to understand the gauge symmetry breaking and thus of the Higgs mechanism [3, 4].

In AdS/CFT quantum behavior [...] are encoded in classical geometry [1]. We conclude that

this central aspect of AdS/CFT has a heuristic semiclassical justification in terms of undulatory

mechanics and relativistic geometrodynamics [4]. The quantization conditions is obtained semi-

classically by means of PBCs similarly to a “particle in a box”, or to Light-Front-Quantization.

Every quantum particle is represented as a classical vibrating string (minimal topology S
1) whose

harmonic energy levels are the quantum excitations of the system, as proven by the semiclassical

correspondence with ordinary QFT [2]. Such a pure 4D description of elementary particles has an

explicit dualism with XD theories. The cyclic worldline parameter of the theory enters into the

equations in formal analogy with the XD of a KK theory. The KK modes turn out to encode quan-

tum excitations of the same 4D system. In analogy with general relativity, the spacetime modulation

of periodicity encoding a given interaction scheme (i.e. local variations of four-momentum) can be

equivalently described in terms of spacetime geometrodynamics. As show in [3] such a description

can also yield ordinary gauge interactions, similarly to original Kaluza’s and Weyl’s proposal. By

combining all these correspondences of the dynamics in modulated compact spacetime we have

inferred semiclassically that the classical configurations in a deformed VXD geometry reproduces

the quantum behavior of a corresponding interaction scheme [4]. Though AdS/CFT has a very rich

phenomenology only partially investigated here and the validity of our approach is limited to semi-

classical physics, our semiclassical description confirms the classical to quantum correspondence

noted in [1], and the application to the QGP freeze-out yields analogies to AdS/QCD.
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