
P
o
S
(
I
C
H
E
P
2
0
1
2
)
4
6
9

Dynamical Structure of Baryons

A. Aleksejevs∗

Grenfell Campus of Memorial University
E-mail: aaleksejevs@grenfell.mun.ca

S. Barkanova
Acadia University
E-mail: svetlana.barkanova@acadiau.ca

Compton scattering offers a unique opportunity to study the dynamical structure of hadrons over
a wide kinematic range, with polarizabilities characterizing the hadron’s active internal degrees
of freedom. We present calculations and detailed analysis of the electric, magnetic, and spin-
dependent dynamical polarizabilities for the lowest in mass SU(3) octet of baryons. These exten-
sive calculations are made possible by the recent implementation of semi-automatized calcula-
tions in chiral perturbation theory which allows evaluating polarizabilities from Compton scatter-
ing up to next-to-the-leading order. The dependencies for the range of photon energies covering
the majority of the meson photoproduction channels are analyzed.

36th International Conference on High Energy Physics,
July 4-11, 2012
Melbourne, Australia

∗Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:aaleksejevs@grenfell.mun.ca�
mailto:svetlana.barkanova@acadiau.ca�


P
o
S
(
I
C
H
E
P
2
0
1
2
)
4
6
9

Dynamical Structure of Baryons A. Aleksejevs

1. Introduction

One of the major goals of low-energy QCD is the investigation of the baryon response to the
external electromagnetic field via a multipole excitation mechanism. Structure parameters which
describe that response are electric, magnetic and spin-dependent polarizabilities. In other words,
the polarizabilities are related to the deformability and stiffness of the baryon. A precise determi-
nation of nucleon polarizabilities still requires substantial effort from both theory and experiment.
For hyperons, the polarizabilities are yet to be measured. In this work, we study the polarizabilities
of baryons using the Compton scattering, which is a straightforward process from both theoretical
and experimental points of view. In general, the polarizabilities in a very low energy region of the
Compton scattering are treated as static (with very little or no dependence on the photon energy),
but it can be assumed that at higher energies, and especially near meson production threshold, this
static behavior will break and the polarizabilities will become dynamic. The main goal of this
work is a study of dependence of the electric, magnetic and spin-dependent polarizabilities on the
photon energy. We use the relativistic chiral perturbation theory (ChPTh) while applying the mul-
tipole expansion approach for the Compton structure functions. The various versions of ChPTh
predict a rather broad spectrum of values for polarizabilities, but to date it is the only theory avail-
able in the regime of non-perturbative QCD and has been employed here using our computational
hadronic model (CHM [5]). CHM gives us a possibility to avoid the low-energy approximation in
the Compton structure functions and retain all the possible degrees of freedom arising from SU(3)
chiral Lagrangian. We provide a short description of the formalism used in this work in the section
“Formalism”. Analysis of the dynamical behavior of polarizabilities along with their static values
is presented in the “Results”.

2. Formalism

In the presence of an external electromagnetic field, induced electric and magnetic dipole mo-
ments of the baryon generate effective Hamiltonian He f f = −1

2 4παE2− 1
2 4πβH2. Here, propor-

tionality constants α and β are called electric and magnetic polarizabilities, respectively. Although
the polarizability values are quite small (10−4 ( f m3)), they were successfully measured by sev-
eral experimental groups using the Compton scattering and employing the dispersion sum rules
analysis to extract the polarizabilities from the cross section data. The current PDG [1] averaged
experimental values for the electric and magnetic polarizabilities for protons and neutrons are:

αp = (12.0±0.6)10−4( f m3); βp = (1.9±0.5)10−4( f m3);

αn = (11.6±1.5)10−4( f m3); βn = (3.7±2.0)10−4( f m3).

For protons and neutrons α and β values are approximately the same, and the positive value of the
magnetic polarizability points to the paramagnetic nature of the nucleon.

If the baryon is placed in the time-varying electromagnetic field, another set of dipole moments
is induced and the following effective Hamiltonianl describes that type of interaction:

Hspin
e f f =−1

2 2πγE1E1σ · (E× Ė)− 1
2 2πγM1M1σ · (B× Ḃ)−4πγM1E2σiB jEi j−4πγE1M2σiE jBi j

(2.1)

Ti j = 1
2(∂iTj +∂ jTi); T = {E, B}.
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The coefficients of the proportionality in the Eq.(2.1), γE1E1, γM1M1, γM1E2 and γE1M2 are called
spin-dependent polarizabilities and correspond to the dipole-dipole and dipole-quadrupole elec-
tric/magnetic transitions. It is quite difficult to measure these spin-dependent polarizabilities sepa-
rately, but for the specific kinematics of the forward/backward scattering these structure parameters
can be combined into so-called forward γ0 and backward γπ polarizabilities, γ0 =−γE1E1−γM1M1−
γM1E2− γE1M2 and γπ =−γE1E1 + γM1M1 + γM1E2− γE1M2, and can be accessed by the experiment.
In order to evaluate the polarizabilities theoretically, one can use the Compton scattering and relate
the amplitude to the set of the Compton structure functions Ri [3] in the following way:

1
8πW M(γB→ γ ′B) = R1(ε ′∗ · ε)+R2(s′∗ · s)+ iR3σ · (ε ′∗× ε)+ iR4σ · (s′∗× s)+

(2.2)

iR5((σ · k̂)(s′∗ · ε)− (σ · k̂′)(s · ε ′∗))+ iR6((σ · k̂′)(s′∗ · ε)− (σ · k̂)(s · ε ′∗))

Here, W = ω +
√

ω2 +m2
B is the center of mass energy and ω is the energy of the incoming photon.

The unit magnetic vector (s = (k̂× ε)), polarization vector (ε) and unit momentum of the photon

(k̂ =
k
k

) are denoted by the prime for the case of the outgoing photon. Although the choice of
the basis for the invariant Compton amplitude is not unique [3], the basis in Eq.(2.2) is the most
convenient for evaluating polarizabilities. Here, in Eq.(2.2), the structure functions Ri are directly
related to the electric, magnetic and spin-dependent polarizabilities in the multipole expansion. If
we keep only dipole-dipole and dipole-quadrupole transitions in the multipole expansion of the
Compton structure functions [7], we have rather simple connecting formulas to the polarizabilities
of the baryon:

RNB
1 = ω2αE1; RNB

2 = ω2βM1; RNB
3 = ω3(−γE1E1 + γE1M2);

(2.3)

RNB
4 = ω3(−γM1M1 + γM1E2); RNB

5 =−ω3γM1E2; RNB
5 =−ω3γE1M2.

Although the polarizabilities used in Eq.(2.3) are defined as constants, it is essential to treat them
as energy-dependent quantities [4]. The reason behind this extension to the dynamical (energy-
dependent) polarizabilities is dictated by the fact that the Compton scattering experiments were
performed with 50 to 800 MeV photons and hence required additional theoretical information to
extrapolate the results to zero-energy parameters. It is also well known that the polarizabilities can
become energy-dependent due to the internal relaxation mechanisms, resonances, and particle pro-
duction thresholds. Accordingly, we keep all orders in ω for the Compton structure functions (for
static polarizabilities we keep only order up to O(ω2) for R1,2 and up to O(ω3) for R3,4,5,6), and
thus determine the energy-dependent polarizabilities. A connection between dynamic and static
polarizabilities can be achieved by taking a limit to zero photon energy. The Compton structure
functions up to one-loop order are calculated using CHM [5] based on the relativistic chiral pertur-
bation theory. In addition, the structure-dependent pole contribution to the nucleon polarizabilities
is taken into account in the form of the nucleon ∆-resonance excitation.

3. Results

The polarizabilities calculated for the proton with the photon energies up to 300 MeV are
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Figure 1: Dependencies of the proton electric, magnetic and spin-dependent polarizabilities on photon
energy ω(GeV) in the center-of-mass reference frame. The first row (from left) corresponds to the electric
and magnetic polarizabilities in 10−4 ( f m3). The second row are spin-dependent forward γ0 and backward
γπ polarizabilities in 10−4 ( f m4). Green-dashed curve corresponds to the meson-nucleon loops contribution
only and solid-red curve is the result with ∆ resonance pole contribution added.

shown on Fig.1. It is evident that below 50 MeV they have very small energy dependence. For the
neutron, the energy dependencies of the dynamical polarizabilities have similar behavior except
the values are bigger on absolute scale. Here we will only provide a description for the proton
dynamical polarizabilities.

The electric polarizability of the proton has very strong, resonance-type dependence near the
pion production threshold. The ∆-pole contribution has a small effect while consistently reducing
αp(ω) values for all the energies. Of course, to make final predictions in the ChPTh of the values of
polarizabilities, it is required to add the contribution from the resonances in the Compton scattering
loops. Hence, in order to compare our results with experimental values, we have used resonance
loops results borrowed from the small scale expansion (SSE) approach [6]. If no ∆-pole contribu-
tion is added, the magnetic polarizability in Fig.1 stays negative (diamagnetic) for almost all the
energies. The ∆-pole contribution is very large and shifts βp(ω) from negative to positive (para-
magnetic) values for energies up to 250 MeV. This behavior is quite natural, since the pion loop
calculations reflect magnetic polarizability coming from the virtual diamagnetic pion cloud and the
∆ resonance contribution to βp(ω) is driven by the strong paramagnetic core of the nucleon. The
spin-dependent polarizabilities, γ0 and γπ , have strong dependence near the pion production thresh-
old and the ∆- pole contribution is evident near the ∆ production threshold. If we take contributions
of order O(p3) in ChPTh power counting, we get an excellent agreement with [8]. Our result for
the proton polarizabilities up to the one-loop order, plus including ∆- pole and SSE contribution is
the following (in units of 10−4( f m3)):

αp = (7.38(π− loop)−0.95(∆−pole)+4.2(SSE)) = 10.63;

βp = (−2.20(π− loop)+3.0(∆−pole)+0.7(SSE)) = 1.49.

In the following table, we list the results for the spin-dependent static polarizabilities:
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Figure 2: Electric and magnetic dynamical polarizabilities of hyperons in units of 10−4 ( f m3) as a function
of the photon energy ω(GeV). Here, solid red line represents the electric polarizability and dashed green line
is the magnetic polarizability.

10−4 ( f m4) O(p3)[9] O(p4)[10] O(ε3)[11] HYP. Dr. [12] This work Exp.

γ0(p) 4.6 -3.9 2.0 -1.1 1.1 -0.90 ±0.08 ±0.11
γπ(p) 4.6 6.3 6.8 7.8 6.1 8.0 ±1.8

The listed results have a broad spectrum of values, so clearly more work is needed in this area.
Our values in this table do not include the ∆ resonance in the loops, but if we follow the trend of
the ∆- pole contribution into γ0 and γπ , we can see that inclusion of resonance in the loops for the
Compton scattering will bring our results closer to the experimental values. The static electric and
magnetic polarizabilities for hyperons have been first calculated in [13] and just recently calcula-
tions have been completed for the spin-dependent static polarizabilities in [14]. Both groups were
using heavy baryon chiral perturbation theory. The dynamical electric and magnetic polarizabilities
for hyperons first have been calculated in [15]. In Fig.2 we provide updated results for dynami-
cal electric and magnetic polarizabilities for hyperons using basis from Eq.(2.2) in the Compton
scattering amplitude.

For all polarizabilities listed in Fig.(2), the electric polarizabilities have very similar resonant-
type behavior near the meson-production thresholds and the magnetic polarizabilities for all hyper-
ons have negative low energy (static) values. Once again it is important to include both pole and
loop resonance contributions for a complete analysis. In Fig.(3), we present the first results on the
forward and backward spin-dependent dynamical polarizabilities for the hyperons.

As one can see from Fig.(3), for all hyperons, the spin-dependent backward polarizability
dominates the forward polarizability on the absolute scale. Simultaneously, they all exhibit almost
static behavior in the very low energy region of the Compton scattering. For all dynamical po-
larizabilities of the SU(3) octet of baryons, we find that their values are strongly governed by the
excitation mechanism reflected in the meson production peaks. Hence the study of these polariz-
abilities directly probes the internal degrees of freedom which govern the structure of baryons at
low energy. In this work, we have calculated the electric, magnetic and spin-dependent dynami-
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Figure 3: Forward (γ0) and backward (γπ) spin-dependent dynamical polarizabilities of hyperons in units
of 10−4 ( f m4). Red solid line shows the forward spin-dependent polarizability and green dashed line corre-
sponds to the backward spin-dependent polarizability.

cal polarizabilities of the SU(3) octet of baryons using ChPTh implemented in CHM. We found
that predictions of the chiral theory derived from our calculations (up to one-loop order and not
including resonances in loop calculations) are somewhat consistent with the experimental results.
The calculations of the dynamical polarizabilities with baryon resonances in the loops is our cur-
rent goal. It is also evident that further experimental work is needed, especially for the hyperon
polarizabilities.
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