

$B ightarrow X_s \gamma$ and $B ightarrow X_s \ell^+ \ell^-$ at BABAR

Gerald Eigen* †

University of Bergen E-mail: gerald.eigen@ift.uib.no Representing the BABAR collaboration

We present new $B \to X_s \gamma$ measurements using both a fully inclusive approach and a sum of 38 exclusive final states. We update total and partial branching fractions, photon energy moments and the *CP* asymmetry. We extract the *b* quark mass and the kinetic energy of the *b* quark inside the *B* meson. For $B \to K^{(*)}\ell^+\ell^-$ decays, we present our final results on branching fractions, isospin asymmetries, *CP* violation asymmetry and lepton flavor ratios. For $B \to K^*\ell^+\ell^-$ modes, we have updated the angular analysis to determine the K^* longitudinal polarization and the lepton forward-backward asymmetry using the full *BABAR* data sample.

36th International Conference on High Energy Physics, July 4-11, 2012 Melbourne, Australia

*Speaker.

[†]This work was supported by Norwegian Research Council. I would like to thank G. Hiller and D. van Dyk for supplying the latest $B \to K^{(*)} \ell^+ \ell^-$ theory predictions and L. Sun for his technical help.

1. Introduction

The decays $B \to X_S \gamma$ and $B \to K^{(*)} \ell^+ \ell^-$, where $\ell^+ \ell^-$ is $e^+ e^-$ or $\mu^+ \mu^-$, are flavor-changing neutral-current processes that are forbidden in the Standard Model (SM) at tree level. They are described by an effective Hamiltonian that factorizes short-distance contributions from long-distance effects. The $B \to X_S \gamma$ decay proceeds via the electromagnetic penguin diagram in which the shortdistance part is determined by the effective Wilson coefficient C_7^{eff} . In $B \to K^{(*)} \ell^+ \ell^-$ modes, the Z penguin and the box diagram also contribute whose short-distance parts are parametrized in terms of the effective Wilson coefficients C_9^{eff} (vector part) and C_{10}^{eff} (axial-vector part). Physics beyond the SM introduces new loops and box diagrams with new particles (*e.g.* charged Higgs boson, supersymmetric particles) that may modify the effective Wilson coefficients C_S and C_P , respectively. To determine the Wilson coefficients precisely, we need to measure many observables in different modes. These rare decays probe New Physics at a scale of a few TeV.

2. $B \rightarrow X_s \gamma$

BABAR has updated the $B \to X_s \gamma$ measurements both in a fully inclusive and a semi-inclusive analysis using $383 \times 10^6 B\bar{B}$ events [1] and $471 \times 10^6 B\bar{B}$ events [2], respectively. In the SM at $\mathscr{O}(\alpha_s^2)$, the branching fraction is predicted to be $\mathscr{B}(B \to X_S \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ for photon energies in the *B*-rest frame, $E_{\gamma} > 1.6$ GeV [3]. The measurement of $\mathscr{B}(B \to X_S \gamma)$ provides constraints on the charged Higgs mass $m_{H^{\pm}}$. The shape of the E_{γ} spectrum depends on the *b* quark mass m_b and its momentum inside the *B* meson. The shape function is expected to be similar to that for $B \to X_u \ell v$. Thus, precise measurements of the E_{γ} spectrum help us with extracting $|V_{ub}|$.

In the fully inclusive analysis, we update total and partial branching fractions, photon energy moments and the $B \to X_{s+d} \gamma CP$ asymmetry [1]. To suppress $e^+e^- \to q\bar{q} (u,d,s,c)$ continuum and $B\bar{B}$ backgrounds, we tag the recoiling B in semileptonic decays and use optimized π^0 and η vetoes, missing energy requirements and the output of two neural networks. For a signal efficiency of 2.5%, the efficiency for accepting continuum ($B\bar{B}$) background is reduced to 5×10^{-6} (1.3 × 10^{-4}). We estimate the residual continuum background by studying data taken 40 MeV below the $\Upsilon(4S)$ peak. Figure 1 (left) shows the $B \to X_s \gamma$ partial branching fraction after background subtraction and correcting for efficiency, resolution effects and Doppler smearing. For comparison, we show the predicted E_{γ} spectrum in the kinetic scheme using HFAG world averages for the shape function parameters [4]. For $E_{\gamma} > 1.8$ GeV, BABAR measures a total branching fraction of $\mathscr{B}(B \to X_S \gamma) = (3.21 \pm 0.15_{stat} \pm 0.29_{svs} \pm 0.08_{mod}) \times 10^{-4}$ where uncertainties are statistical, systematic and model, respectively. This is in good agreement with previous measurements [5, 6, 7]. After extrapolation to $E_{\gamma} > 1.6$ GeV, the branching fraction increases to $\mathscr{B}(B \to X_S \gamma) = (3.31 \pm$ $0.16_{stat} \pm 0.30_{sys} \pm 0.09_{mod}) \times 10^{-4}$, in good agreement with the SM prediction. We use this result to constrain new physics in the type II two-Higgs doublet model [8] excluding $m_{H^{\pm}} < 327 \text{ GeV/c}^2$ at 95% confidence level (*CL*) independent of $\tan \beta$.

For $E_{\gamma} > 1.8$ GeV, BABAR measures energy moments of $\langle E_{\gamma} \rangle = (2.267 \pm 0.019_{stat} \pm 0.032_{sys} \pm 0.003_{mod})$ GeV and $\langle (E_{\gamma} - \langle E_{\gamma} \rangle)^2 \rangle = (0.0484 \pm 0.0053_{stat} \pm 0.0077_{sys} \pm 0.0005_{mod})$ GeV² that are consistent with previous results [5, 6, 7]. Tagging the *B* flavor by the lepton charge, we define the *CP*

Figure 1: Partial branching fraction versus E_{γ} measured in a fully inclusive analysis (left) and for the sum of exclusive modes (right). Error bars (left) show statistical and total uncertainties. The solid curve shows a prediction for the kinetic scheme. The vertical bar separates signal from the control region.

Table 1: Determination of m_b and μ_{π}^2 in the kinetic-scheme [12] and shape function scheme [13] using the semi-inclusive analysis.

	BABAR	BABAR	world average	world average	
	kinetic scheme	shape function scheme	kinetic scheme	shape function scheme	
$m_b [{\rm GeV/c^2}]$	$4.568^{+0.038}_{-0.036}$	$4.579^{+0.032}_{-0.029}$	4.591 ± 0.031	$4.620^{+0.039}_{-0.032}$	
$\mu_{\pi}^2 [{ m GeV}^2]$	0.450 ± 0.054	$0.257^{+0.034}_{-0.039}$	0.454 ± 0.038	$0.288\substack{+0.054\\-0.074}$	

asymmetry $\mathscr{A}_{CP}(\bar{B} \to X_{s+d}\gamma) \equiv (\mathscr{N}(\bar{B} \to X_{s+d}\gamma) - \mathscr{N}(B \to X_{s+d}\gamma))/(\mathscr{N}(\bar{B} \to X_{s+d}\gamma) + \mathscr{N}(B \to X_{s+d}\gamma))$ in terms of event yields. After correcting for charge bias and mistagging, we obtain the most precise measurement of $\mathscr{A}_{CP}(\bar{B} \to X_{s+d}\gamma) = 0.057 \pm 0.06_{stat} \pm 0.018_{sys}$, which in agreement with previous results [9, 10] results and the SM prediction of zero [11].

In the semi-inclusive analysis, we combine 38 exclusive $B \to X_s \gamma$ final states [2]. We reconstruct the hadronic mass m_{X_s} in 100 MeV/c² bins and calculate the photon energy by $E_{\gamma} = \frac{m_B^2 - m_{X_s}^2}{2m_B}$. Figure 1 (right) shows the partial branching fraction versus E_{γ} . Table 1 summarizes the fit results of m_b and the kinetic energy of the *b* quark, μ_{π}^2 , extracted from fits to the kinetic scheme [12] and shape function scheme [13]. We measure energy moments of $\langle E_{\gamma} \rangle = (2.346 \pm 0.018^{+0.027}_{-0.022})$ GeV and $\langle (E_{\gamma} - \langle E_{\gamma} \rangle)^2 \rangle = (0.0211 \pm 0.0057^{+0.0055}_{-0.0069})$ GeV² for $E_{\gamma} > 1.9$ GeV. Summing the partial branching fraction over all m_{X_s} bins yields $\mathscr{B}(\bar{B} \to X_s \gamma) = (3.29 \pm 0.19_{stat} \pm 0.48_{sys}) \times 10^{-4}$ for $E_{\gamma} > 1.9$ GeV, which is in good agreement with the results of the inclusive analysis.

3. $B \rightarrow K^{(*)}\ell^+\ell^-$ Rates and Rate asymmetries

Using the full BABAR data sample $(471 \times 10^6 B\bar{B} \text{ events})$, we reconstructs eight $B \to K^{(*)}\ell^+\ell^$ final states with $K^{\pm}, K_S^0, K^{\pm}\pi^{\mp}, K_S^0\pi^{\pm}$ recoiling against e^+e^- or $\mu^+\mu^-$ [14]. We suppress combinatorial $B\bar{B}$ and $q\bar{q}$ backgrounds with two boosted decision trees and veto the J/ψ and $\psi(2S)$ mass regions. For $B \to K^{(*)}\ell^+\ell^-$ modes, we perform one- (two-) dimensional fits of the beam energyconstrained mass (and $K\pi$ mass) to select signal yields. We use the vetoed J/ψ and $\psi(2S)$ samples and generated pseudo experiments to check the performance of our selection.

We measure partial branching fractions $d\mathscr{B}(B \to K^{(*)}\ell^+\ell^-)/ds$ in six $s = m_{\ell^+\ell^-}^2$ bins. Figure 2 shows our results in comparison to the average over all $d\mathscr{B}(B \to K^{(*)}\ell^+\ell^-)/ds$ measurements from *BABAR* [14], Belle [15], CDF [16], and LHCb [17] and to the SM prediction[18, 19]. Table 2

The first uncertainty is statistical, the second is systematic.										
	Mode	$\mathscr{B}[10^{-7}]$	\mathcal{A}_{CP}	$\mathscr{R}_{K^{(*)}}$	\mathcal{A}_{I}	\mathscr{A}_{FB}	\mathscr{F}_L			
	$s\left[\frac{\text{GeV}^2}{c^4}\right]$	all s	all s	$s > 0.1 { m GeV^2/c^4}$	$0.1 \le s \le 8.12$	$1.0 \le s \le 6.0$	$1.0 \le s \le 6.0$			
	$K\ell^+\ell^-$	$4.7^{+0.6+0.2}_{-0.6-0.2}$	$-0.03\substack{+0.14+0.01\\-0.14-0.01}$	$1.00^{+0.31+0.07}_{-0.25-0.07}$	$-0.58^{+0.29+0.02}_{-0.37-0.02}$	-	-			
	$K^*\ell^+\ell^-$	$10.2^{+1.4+0.05}_{-1.3-0.05}$	$0.03^{+0.13+0.01}_{-0.13-0.01}$	$1.13_{-0.26-0.10}^{+0.34+0.10}$	$-0.25^{+0.17+0.03}_{-0.20-0.03}$	$0.26^{+0.27+0.07}_{-0.30-0.07}$	$0.25^{+0.09+0.03}_{-0.08-0.03}$			

Table 2: *BABAR* results for $B \to K^{(*)}\ell^+\ell^-$ modes on total branching fractions, *CP* asymmetries, lepton flavor ratios, isospin asymmetries, the lepton forward-backward asymmetry and K^* longitudinal polarization. The first uncertainty is statistical, the second is systematic.

summarizes our total branching fraction and rate asymmetry measurements. We tag the flavor of each B meson to determine the CP asymmetry

$$\mathscr{A}_{CP} = \frac{\mathscr{B}(\bar{B} \to \bar{K}^{(*)}\ell^+\ell^-) - \mathscr{B}(B \to K^{(*)}\ell^+\ell^-)}{\mathscr{B}(\bar{B} \to \bar{K}^{(*)}\ell^+\ell^-) + \mathscr{B}(B \to K^{(*)}\ell^+\ell^-)}$$
(3.1)

that is expected to be very small in the SM [20, 21]. We extract the lepton flavor ratios

$$\mathscr{R}_{K^{(*)}} = \mathscr{B}(B \to K^{(*)}\mu^+\mu^-)/\mathscr{B}(B \to K^{(*)}e^+e^-)$$
(3.2)

with the constraint $s > 0.1 \text{ GeV}^2/\text{c}^4$ yielding the SM prediction $R_{K^{(*)}} = 1$ [22]. Accounting for the different *B* lifetimes $r_{\tau} = \frac{\tau_{B^0}}{\tau_{a}^{\pm}}$, we define the isospin asymmetry

$$d\mathscr{A}_{I}/ds = \frac{d\mathscr{B}(B^{0} \to \bar{K}^{(*)0}\ell^{+}\ell^{-})/ds - r_{\tau}d\mathscr{B}(B^{\pm} \to K^{(*)\pm}\ell^{+}\ell^{-})/ds}{d\mathscr{B}(\bar{B}^{0} \to \bar{K}^{(*)0}\ell^{+}\ell^{-})/ds + r_{\tau}d\mathscr{B}(B^{\pm} \to K^{(*)\pm}\ell^{+}\ell^{-})/ds}.$$
(3.3)

Figure 2: $d\mathscr{B}/ds$ for $B \to K\ell^+\ell^-$ (left) and $B \to K^*\ell^+\ell^-$ (right) for BABAR data (squares), the experimental average (points) and the SM prediction (grey curves). Vertical bands show the J/ψ and $\psi(2S)$ vetoes.

Figure 3 shows the isospin asymmetry for $B \to K^{(*)}\ell^+\ell^-$ modes in six *s* bins in comparison to the average over all experiments [14, 15, 16, 17]. In the SM, \mathscr{A}_I is expected to be of the order of $\mathscr{O}(1\%)$ [23]. The \mathscr{A}_I measurements below the J/ψ are listed in Table 2. For $B \to K\ell^+\ell^-$, consistency with the SM is at the 2.1 σ level. All other measurements of branching fractions, *CP* asymmetries and lepton flavor ratios are in good agreement with the SM prediction [?, ?, 18, 19].

4. $B \rightarrow K^{(*)}\ell^+\ell^-$ Angular Analyses

The $B \to K^* \ell^+ \ell^-$ decay is characterized by three angles: θ_K the angle between the *K* and *B* in the *K*^{*} rest frame, θ_ℓ the angle between the ℓ^+ and the *B* in the $\ell^+ \ell^-$ rest frame and ϕ the angle

Figure 3: Isospin asymmetry for $B \to K\ell^+\ell^-$ (left) and $B \to K^*\ell^+\ell^-$ (right) for *BABAR* data (squares) and the experimental average (points). Vertical bands show the J/ψ and $\psi(2S)$ vetoes.

between the K^* and $\ell^+\ell^-$ decay planes. The one-dimensional $\cos \theta_K$ and $\cos \theta_\ell$ distributions depend on the K^* longitudinal polarization \mathscr{F}_L and the lepton forward-backward asymmetry \mathscr{A}_{FB} [22, 24]

$$W(\cos\theta_K) = \frac{3}{2}\mathscr{F}_L\cos^2\theta_K + \frac{3}{4}(1-\mathscr{F}_L)\sin^2\theta_K,$$

$$W(\cos\theta_\ell) = \frac{3}{4}\mathscr{F}_L\sin^2\theta_\ell + \frac{3}{8}(1-\mathscr{F}_L)(1+\cos^2\theta_\ell) + \mathscr{A}_{FB}\cos\theta_\ell.$$
(4.1)

Using the full BABAR data sample, we reconstructs six $B \to K^* \ell^+ \ell^-$ final states with $K^* \to K^{\pm} \pi^{\mp}, K_S^0 \pi^{\pm}, K^{\pm} \pi^0$. The event selection is similar to that for rate asymmetries. We extract \mathscr{F}_L and \mathscr{A}_{FB} by performing a profile likelihood scan. Figure 4 shows our \mathscr{F}_L and \mathscr{A}_{FB} measurements in six *s* bins in comparison to the average over all experiments, the SM predictions with uncertainties and predictions for a model in which the sign of Wilson coefficient C_7^{eff} is flipped with respect to the expected SM value [22, 20]. All results are consistent with the SM prediction. In the low *s* region $(1 < s < 6 \text{ GeV}^2/c^4)$, the BABAR results are listed in Table 2. They are consistent with the SM predictions of $\mathscr{F}_L^{SM} = 0.73^{+0.13}_{-0.23}$ and $\mathscr{A}_{FB}^{SM} = -0.05^{+0.03}_{-0.04}$ [18, 20, 22, 25] and with the world averages of $\mathscr{F}_L^{WA} = 0.41 \pm 0.06$ and $\mathscr{A}_{FB}^{WA} = 0.11^{+0.08}_{-0.09}$ [4].

Figure 4: BABAR preliminary results (squares) for \mathscr{A}_{FB} (left) and \mathscr{F}_L (right) for $B \to K^* \ell^+ \ell^-$ modes compared to the average over all experiments (points), the SM prediction (shaded curves) and a model for which the sign of C_7^{eff} is flipped (blue curve). Vertical bands show the J/ψ and $\psi(2S)$ vetoes.

5. Conclusion

The BABAR $B \to X_s \gamma$ results on branching fractions, photon energy moments, m_b , μ_{π}^2 and the *CP* asymmetry are in good agreement with the SM predictions. The charged Higgs mass is constrained to $M_{H^{\pm}} > 327 \text{ GeV}^2/\text{c}^2$ at 95% *CL* independent of $\tan\beta$. For $B \to K^{(*)}\ell^+\ell^-$, the BABAR results on partial branching fraction, isospin asymmetries, lepton flavor ratios, *CP* asymmetries, K^* longitudinal polarization, and lepton forward-backward asymmetry are consistent with the SM predictions. Significant improvement on these measurements will come from LHCb and the Super *B*-factories. The large data samples will permit to study several new angular observables that provide higher discrimination power between the SM and new physics effects.

References

- [1] J.P Lees et al., Phys. Rev. Lett. 109, 191801 (2012); arXiv:1207.5772 [hep-ex] (2012).
- [2] J.P Lees et al., Phys.Rev. D 86 (2012) 052012 (2012).
- [3] M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007).
- [4] D. Asner et al., arXiv:1010.1589v3 (2011); www.slac.stanford.edu/xorg/hfag/triangle/index.html
- [5] B. Aubert et al., Phys. Rev. D 72, 052004 (2005).
- [6] A. Limosani et al., Phys. Rev. Lett. 103, 241801 (2009).
- [7] S. Chen et al., Phys. Rev. Lett. 87, 251807 (2001).
- [8] M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007); U. Haisch, arXiv:0805.2141v2 (2008).
- [9] B. Aubert et al., Phys. Rev. Lett. 97, 171803 (2006); Phys. Rev. D 77, 051103 (2008).
- [10] T. E. Coan et al., Phys.Rev. Lett. 86, 5661 (2001).
- [11] A.L. Kagan and M. Neubert, Phys. Rev. D 58, 094012 (1998).
- [12] D. Benson, I. Bigi and N. Uraltsev, Nucl. Phys. B 710, 726 371 (2005).
- [13] B. Lange, M. Neubert and G. Paz, Phys. Rev. D 72, 073006 (2005).
- [14] J. P. Lees et al., Phys. Rev. D 86, 052012 (2012).
- [15] J. T. Wei et al., Phys. Rev. Lett. 103, 171801 (2009).
- [16] T. Aaltonen et al., Phys. Rev. Lett. 108, 081807 (2012); Phys. Rev. Lett. 107, 201802 (2011).
- [17] R. Aij et al., JHEP 1207, 133 (2012).
- [18] C. Bobeth, et al., JHEP 1007, 098 (2010); ibid, JHEP 1107, 67 (2011).
- [19] C. Bobeth, et al., JHEP 1201, 107 (2012).
- [20] F. Krüger et al., Phys. Rev. D 61, 114028 (2000); Erratum-ibid. D 63, 019901 (2001).
- [21] C. Bobeth et al., JHEP 807, 106 (2008).
- [22] A. Ali et al., Phys. Rev. D 61, 074024 (2000); A. Ali et al., Phys. Rev. D 66, 034002 (2002).
- [23] Th. Feldmann and J. Matias, JHEP 301, 074 (2003).
- [24] C. Bobeth et al., JHEP 0712, 040 (2007).
- [25] F. Krüger and J. Matias, Phys. Rev. D 71, 094009 (2005); G. Buchalla *et al.*, Phys. Rev. D 63, 014015 (2000).