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We take as “training” data the approximate knowledge that was available before LEP, and take
our comparison model to be the Standard Model with a simple dark matter candidate. Partial
Bayes factors are then computed, using as “inference” data the LEP2 Higgs constraints, 2011
XENONI100 dark matter constraints, 2011 LHC supersymmetry search results, and the early
2012 LHC Higgs search results. We find that LEP and the LHC strongly shatter our trust in
the CMSSM, reducing its posterior odds by a factor of approximately two orders of magnitude.
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1. Foreword

This proceedings paper is a summary of the results obtained in ref. [1]. To achieve the nec-
essary brevity we will refer the reader to the full paper for many technical details. We also note
that the statistical terminology used presently has been significantly altered from the original work,
with the intention of improving its alignment with the relevant statistics literature. We hope these
changes render the present description of our statistical methods superior to the original in clarity.

An extended version of this summary will appear in the proceedings of conference C12-06-10.

2. Introduction

Supersymmetry is an attractive and robust extension of the Standard Model (SM) of particle
physics, the most well-studied version of which is the constrained minimal supersymmetric stan-
dard model (CMSSM). Based on experimental data, an extensive literature delineates the regions of
the CMSSM where its parameters can most probably fall, however the more fundamental question
is that of model selection; how likely is it that the CMSSM is an accurate description of weak-scale
physics? To address this question one has several options. The most common frequentist measure
is the p-value, which is the probability that more extreme! data than that observed would occur
assuming the hypothesis in question to be true [2]. In the Bayesian approach model selection is
based on the Bayes factor, and requires comparison to alternative hypotheses. [3].

To compute Bayes factors we need to first compute the marginalised likelihood P(data|H;),
also called the “evidence”, for each model hypothesis H;, e.g.

P(data|H;) = / 46 P(data6, Hy) P(6|H,). @1

This requires the specification of a prior probability density P(0|H;) over the parameters 6 of
each model, which must reflect our knowledge (or lack thereof) of the parameters before knowing
data. In the case where our prior knowledge is weak it is generally very difficult to specify a
prior which both accurately expresses this knowledge and is “proper”, in the sense that its integral
can be normalised to 1 (indeed the first criterion alone is difficult to achieve). Common choices of
simple prior, such as uniform or logarithmically flat distributions, as well as most formal minimally-
informative priors (such as maximum entropy [4] or “reference” [5] priors), are improper.

For inference of the model parameters themselves the use of such improper priors is generally
unproblematic, as they may still result in proper posterior distributions once combined with suf-
ficiently powerful data, however they cause major problems for model comparisons because they
cannot be used to compute marginalised likelihoods. A naive fix may be to specify cutoffs to ren-
der the original priors proper, however unless the cutoff approximates some actual prior knowledge
it merely introduces an arbitrary constant into the marginalised likelihood, which thus remains
useless for model comparison.

This problem is well known and a number of solutions have been proposed [6], however they
generally depart from pure Bayesian methods. In this work we adopt the simplest of these solutions,
which is to use so-called “partial” Bayes factors, which, although more limited in the inferences

'Here ‘more extreme’ can be defined in numerous ways.
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that can be derived from them compared to more advanced methods, retain a pure Bayesian inter-
pretation.

To compute partial Bayes factors, one takes note of the aforementioned fact that it is generally
possible to obtain a proper posterior from an improper prior by incorporating sufficiently strong
data via a Bayesian “update” (i.e. an iteration through Bayes’ theorem). The idea is then to use
some portion of the available data to update the improper priors in this fashion, and then use the
resulting posterior together with the remaining data to compute a Bayes factor as normal. The
resultant Bayes factor is only “part” of the full Bayes factor that would have resulted from using
all the data (if it could have been computed), and so it is termed “partial”.

To illustrate the procedure explicitly, consider the division of the available data into two sets; a
“training” set d;, and an “inference” set d». In principle many such divisions are possible, and each
will result in a different partial Bayes factor (a “flaw” which alternate methods attempt to remedy,
generally by combining the various possible partial Bayes factors in some way, in conjunction with
specifying rules for choosing the divisions to use), however in our situation a roughly chronological
separation is quite natural and has a useful interpretation. We describe our chosen separation in
section 3. Next consider the ordinary Bayes factor, for a test of some model H against an alternate
H,, for such a set of data:

P(dy,d\|H) P(ds|dy,H) P(di|H)
B(d. ,d = = = B(d»|d;)B(d 22
(da,d1) P(dy,d\|Hy)  P(daldy,Hay) P(di|Har) (da|d1)B(d,) (2.2)

Here B(d:|d)) is the partial Bayes factor obtained by “training” the model priors with d; and then
performing the comparison using d,, while B(d}) is uncomputable or unreliable since to compute
it we need to integrate over an improper prior. The product B(d»|d;)B(d;) is the standard (uncom-
putable) Bayes factor B(d,,d; ), but by discarding the uncomputable piece B(d;) we are left with at
least some inferential power, and as a bonus our sensitivity to the original improper prior is reduced
(in proportion to the informativeness of d).

Since we have stuck to the Bayesian rules there exists a Bayesian interpretation of B(d:|d, ).
Consider its place in computing the posterior odds for H vs Hyy:

OddS(H . Halt‘dz,dﬂ = B(dz‘dﬁ OddS(H . Halt’d1> = B(dz‘d])B(d] ) OddS(H . Halt) (2.3)

The prior odds, Odds(H : Hyy), cannot be computed by any standard Bayesian means and must
be supplied based on prior knowledge. The combination Odds(H : Hyy|d1) = B(d) Odds(H : Hy)
is no more computable for its extra dependence on the uncomputable B(d;), and so, instead of
considering their personal Odds(SM : CMSSM), we invite the reader to instead directly consider
their personal Odds(H : Hy|d)). The partial Bayes factor B(d,|d;) can then be interpreted as the
factor required to correctly update these personal odds to take into account the newly learned data d;
(assuming of course that the reader roughly accepts our adopted model priors and our assumptions
regarding the nature of d; and d).

3. Training and inference data

We describe in this section the “training” data used to convert our initially improper parameter
space priors into informative proper priors via a Bayesian update, and the “inference” data which
is used in conjunction with the trained priors to construct partial Bayes factors.
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First, our “training” data includes the WMAP measurement of the WIMP relic density thc
(used as a central constraint on the neutralino relic density), electroweak precision measurements,
limits on rare B and D decays, the LEP2 lower bounds on sparticle masses, and the muon g — 2
anomaly.

For inference data we use in turn: the LEP2 Higgs search limits; the 2011 XENON100 limits
on the WIMP-nucleon scattering rate [7] together with the 2011 LHC 1 fb~! zero-lepton sparticle
search limits [8]; and the February 2012 LHC Higgs search results [9]. Partial Bayes factors are
computed for the addition of each of these pieces of data in turn, giving us three such factors plus a
‘total” partial Bayes factor which is the cumulative effect of the total inference data set. For further
details of the training and inference data we refer the reader to the full description of the analysis
given in ref. [1].

We also compute PBFs with (g —2), removed from the training set, to investigate its influence
and to consider the consequences of it being explained within the SM. This action destroys any hope
of achieving even a weakly proper trained prior for the CMSSM, so this set of PBFs can only be
interpreted as describing the damage to the Mo, M; ;, <2 TeV region of the CMSSM, not as damage
to the CMSSM as a whole.

4. Results

Two previously studied priors were used to compute partial Bayes factors (to allow an inves-
tigation of prior sensitivity and to remain consistent with previous literature): the ‘log’ prior [10],
which is flat in A and tan 3, and flat in the logarithm of My and M, /,, and the ‘naturalness’ prior
[11] (specifically the ‘CCR’ version of this prior [12]), which assigns low prior weight to fine-tuned
regions of CMSSM parameter space. The u < 0 branch is strongly disfavoured [13] so we scan
only the ¢t > 0 branch to reduce computational demand. We scan M, and M/, below 2 TeV since
(g —2)u sufficiently excludes model points outside this range, with —3 TeV < Ag < 4 TeV and
0 <tanf < 62 (tan B = 0 is of course unphysical so receives zero weight after training). The top
quark mass is also scanned using a Gaussian prior with mean 172.9 GeV and standard deviation
1.1 GeV.

Scans were performed using MultiNest v2.12 , with the CMSSM spectrum generated
by ISAJET v7.81 and further training observables computed by micrOmegas v2.4.Q and
SuperISO v3.1.The LEP Higgs search likelihood is implemented with a simple error function
approximation, while the LHC Higgs search likelihood is reconstructed from ATLAS results [9] us-
ing asymptotic approximations and utilising Higgs branching ratios computed by HDECAY v4.43.
The LHC sparticle search likelihood is implemented using a Bayesian neural network trained us-
ing 50,000 model points sampled from the full 4D parameter space, using Herwig++ 2.5.2
to generate 15,000 Monte Carlo events per model point, with Delphes 1.9 providing a fast
simulation of the ATLAS detector, and with the total SUSY production cross section computed
at next-to-leading order by PROSPINO 2.1, in a simulation chain tuned to match the ATLAS 1
fb—! zero-lepton jets+MET search described in ref. [8]. For further details and references related
to these codes we refer readers to the full study [1].

The marginal likelihood values for the SM-like comparison model are computed assuming
all parameters except the physical Higgs mass to be fixed, excluding parameters involved in the
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log prior natural prior . .
Knowledge change Discr. inf. Discr. Inf. Welght of evidence
PBF (bits) PBF (bits) (against CMSSM)
All training data
Training — LEP+XENON100 | 14.7(4) 3.88(4) | 18.6(6) 4.22(4) | Strong
" " — ATLAS-sparticle 2.04(5) 1.03(4) 1.97(6) 0.98(5) | Barely worth mentioning
" _s ATLAS-Higgs 6.1(2) 261(4) | 5.4(2) 2.43(5) | Substantial
Training — All 185(5) 7.53(4) | 197(6) 7.62(5) | Decisive
(g—2) u excluded from training data (applicable only for Mo, M}, <2 TeV)
Training — LEP+XENON100 2.72(6) 1.45(3) 2.15(6) 1.11(4) | Barely worth mentioning
" " — ATLAS-sparticle 0.72(2)f| —0.48(4) 1.81(6) 0.86(5) | Barely worth mentioning
"" — ATLAS-Higgs 4.2(2) 2.09(4) 6.7(2) 2.74(5) | Barely worth mentioning
Training — All 8.3(1) 3.05(4) | 26.1(8) 4.71(5) | Substantial - Strong"

* This apparent slight preference back towards the CMSSM is an artefact of the reweighting process used to obtain
these results from the primary scans. See ref. [1] for details.

 Robustness to change in prior is compromised by the removal of (g — 2) u from the training set; the results we
obtain span the two listed categories of the Jeffreys scale.

Table 1: Summary and interpretation of our results. Column 1 indicates the “training” and “inference”
data used to compute the partial Bayes factors (PBFs) in the adjacent columns (where a PBF> 1 indicates
that the inference data provides evidence in favour of the SM-like hypothesis); ‘Training’ indicates that the
priors were trained using only the “baseline” training data described in section 3, while " " indicates that
training was performed using all the data from the row above. ‘LEP+XENONI100’, > ‘ATLAS-sparticle’
and ‘ATLAS-Higgs’ indicate that the update data was the LEP2 Higgs and 2011 XENON100 dark mat-
ter search data [7], the ATLAS 1 fb—! SUSY search data [8], and ATLAS 1 fb~! Higgs search data [9]
respectively. The ‘Discr. inf’ columns contain the discrimination information provided by the update
data (simply the base 2 logarithm of the PBF) in favour of the SM-like hypothesis (the KL divergence
KL(P(d>|d1,SM)||P(d>2|d1,CMSSM)) being the expected value of this quantity under P(dz|d;,SM)). The
two pairs of PBF and Discr. inf. columns indicate the results obtained using ‘log’ and ‘natural’ priors. The
final column gives an interpretation of the strength of the evidence provided by the inference data, according
to the Jeffreys scale.

dark sector, which are assumed to be unaffected by any data in our inference set. The relevant 1D
parameter space my, is given an initially log prior, which becomes roughly Gaussian (peaked near
90 GeV) after training with electroweak precision data [14]. SM marginal likelihoods are com-
puted by directly applying the inference data likelihoods to this function (using standard numerical
integration tools), and are then combined with the CMSSM marginal likelihoods to obtain partial
Bayes factors, which are presented in table 1.

5. Discussion and conclusions

Our results provide a full probabilistic justification for the current intuition in the community
that if the CMSSM is a good approximation to TeV scale physics, then it is extremely surprising
that no direct evidence for it has yet been observed. In addition, our computed partial Bayes factors
demonstrate that the parameter space priors that enable the above conclusion have the further, and
unavoidable, implication that it is now much less probable that the CMSSM will be discovered to
well approximate Nature than it was before the LEP2 Higgs search results were obtained — in the
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sense that the odds of this occurring vs the SM remaining valid (with dark matter and (g —2),
unexplained) are a factor of approximately 200 less with our ‘inference’ data considered than when
only the ‘training’ data is considered. This conclusion cannot be avoided simply by altering the
priors used because strong tensions exist even at the likelihood level, particularly between (g —2),
and the ATLAS Higgs search likelihood.

The only escape available is to abandon (g —2), as a constraint; even dropping the assumption
that neutralinos fully account for the observed dark matter relic density does not sufficiently open
up the parameter space to avoid strong conflict between (g —2), and my,. However, our results show
that the Mo, M , <2 TeV region of the CMSSM i still disfavoured even if (g — 2)y is abandoned.

Finally, we also highlight that our study was performed using February 2012 data for the Higgs
mass constraints and that since this time these constraints have become much stronger, such that
updating them would significantly strengthen our results.
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