
P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
)
0
1
4

On the possibility of massless neutrino oscillations

Oleg Kosmachev∗

VBLHEP JINR
E-mail: kos@theor.jinr.ru

Qualitative conclusion was obtained about the possibilityof massless neutrino oscillations. This

result was made in the framework of five fixed assumptions and rigorous consequences on their

basis. Such oscillations can arise if particles form a quartet. The quartet is a state, which describes

two pairs of particle-antiparticle by means of a single equation. In this case oscillations are

determined not by difference of the masses (masses m=0 for each pair), but by the distinction of

spin states.
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1. Introduction

Our approach, proposed for understanding neutrino oscillations, differs markedly from the
accepted one. Formally, it is not a negation of generally accepted approach, if only for the obvious
reason that here we consider the possibility of massless neutrino oscillations, and not massive ones
as it requires by the current approach. Today we do not have evidence that the existence of a
massive neutrinos have ruled out the existence of massless ones and vice verse.

What is more, one can show that massive and massless leptons appear on an equal footing in
classical works of Dirac [1], Pauli [2], Majorana [3].

Therefore it is interesting to compare massive and masslessneutrino oscillations, especially
taking into account numerous difficulties and inconsistencies inherent in these area of elementary
particle physics. The comparison makes sense and is valuable based on the common principles,
which cannot be rejected by any of approaches.

One of the starting points of the prevailing point of view on the oscillations is an assumption,
which is called quark-lepton analogy. In fact, it is a "cover" for the gap, in virtue of which lepton
sector entirely dropped out of thorough and largely successful theory of unitary symmetry. The
analogy as an expression of similarity or similitude with regard to lepton and quarks looks artificial
and unjustified.

Indeed, leptons are actually observed particles, whereas quarks are not observed. Adequate
description of leptons is impossible out of consistent relativity, while quarks initially are not rela-
tivistic structures. That is why leptons found no place among hadrons.

Different ways of relativization of quark model began immediately after its approval. In its
time [4], this activity ironically called "the construction of the Babel Tower". This construction is
still not finished.

Our approach can be called structural and relativistic. It started with a question of a single
description of the lepton sector. In this way, relativity provided a variety of properties, possibility of
theoretical identification of each lepton and coverage in the whole lepton sector. As a consequence,
it was found that each lepton can be attributed to its own structure. At this stage, it looks as a
special, not repeated composition of the wave equation. Forthe leptons, this is equivalent to the
existence of their own quantum numbers.

These and some other arguments allow us to raise the questionof possible existence of spe-
cific spin oscillation for massless neutrinos. We suppose that the proposed results are necessary
prerequisites for spin oscillations. Comparison of our approach with the generally accepted ones
shows that they are not interrelated between each other; andeach of them is is eligible for further
examination until new experimental facts help to make a definite choice among different models.

The great successes of the theory of unitary symmetries indicate that quark structure largely
corresponds to the nature of the hadrons. However, the fundamental question of its relation to
relativity remains open [5]. Our experience in lepton sector allows us to approach this problem
from a new point of view [6]. Explanation of the quark structure of hadrons through relativistic
constituents, just as it happened in the lepton sector, eliminates difficulties of the above-mentioned
problem.
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2. Lepton sector

In the works of last years [7] - [9] we found a possibility to describe a set of massive and
massless, charged and neutral, stable and unstable leptonson the basis of Dirac algorithm. The
algorithm is necessary and sufficient conditions for formulation of the lepton equations. It was
received by means exhaustive group analysis of the Dirac equation.

Irredundant complect of the five initial suppositions, lying in the basis of the algorithm, is fol-
lowing: the equations must be invariant and covariant underhomogeneous Lorentz transformations
taken into account all four connected components; the equations must be formulated on the base
of irreducible representations of the groups, which determine every lepton equation; conservation
of four-vector of probability current must be fulfilled, andfourth component of the current must be
positively defined; the lepton spin is supposed equal to 1/2;every lepton equation must be reduced
to Klein-Fok- Gordon equation (KFG).

All the lepton equations, just like the Dirac equation [1], Pauli [2] equation for the two-
component massless neutrino and Majorana equation for massive neutrino [3], were obtained with-
out recourse to Euler-Lagrange method. Moreover, a single approach and unified mathematical
formalism were developed.

We obtained full and closed set of groups for formulation of wave equations both stable and un-
stable leptons [8],[9]. The completeness and the closure mean that in the frame of accepted supposi-
tions there is no possibility to obtain additional equations and for their formulation four conjugate
components of Lorentz group (i.e. subgroupsdγ , fγ ,bγ ,cγ ), or some their combination are suffi-
cient. Concrete sense of all four components is following: groupdγ realizes proper orthochronous
representation; groupfγ — improper orthochronous or〈P〉-conjugate representation; groupbγ

— proper antichronous or〈T 〉-conjugate representation; groupcγ — improper antichronous or
〈PT 〉= 〈T P〉-conjugate representation.

It was found that all leptons divided into singlets, doublets and quartets, depending on structure
of highest order subgroups, . Singlets are the particles that do not have antiparticles. Doublets
are associated with equations, which describe one particleand its antiparticle. Finally, quartet
equations describe two pairs of the doublets. Each doublet pair is connected to two subgroups. At
the same time, each subgroup is identified by its own completeset of quantum numbers, i.e. the set
of indexes of this subgroups [10].

In the case of stable lepton groups, maximal subgroups are four subgroups, which realize the
four connected components of homogeneous Lorentz group. Here and later infinitesimal form of
the group representations is implied and used. All the stable leptons groups have order equal to 32.

As can be seen from the above, classification of leptons (singlets, doublets, quartets) primarily
based on the differentiation of the concepts of particles and antiparticles. The criterion of either
antiparticle presence or its absence is simple and precise for the stable leptons.The lepton equa-
tion describes a particle and antiparticle only if a group ofthis equation contains〈T 〉-conjugate
connected components. If they are not present, the equationdescribes the singlet state.

3. Peculiarities of the massless quartet

The quartet equation for the neutrino is Pauli equation [2] for two-component massless neu-

3



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
)
0
1
4

On the possibility of massless neutrino oscillations Oleg Kosmachev

trino, which contains all the four connected components. These four subgroups are related each
other through discrete transformations.〈P〉 is the inversion of spatial axes,〈T 〉 is the time conver-
sion and〈PT 〉= 〈T P〉 is the sequential action of the two transformations.

Defining relations for the group of Pauli equation allow for several various formulation. The
simplest of them, analogously to the Dirac designations, has the form [7]

γsγt + γtγs = 2δst , γ2
s = 1 (s, t = 1,2,3),

γsγ4− γ4γs = 0, (s,= 1,2,3),
γ2

4 = 1.
(3.1)

In contrast to Dirac equation, the dimension ofγ-matrices, according to this definition, is 2×2.
As a result, instead of one bispinor solution we obtain four nonequivalent spinor solutions. The four
connected components mentioned above are divided in this equation into two pairs, so that within
each pair, they are connected with each other by transformation of time reversalbγ = 〈T 〉dγ and
cγ = 〈T 〉 fγ . The conversation in this case is reduced to the multiplication of three generators of
each subgroup (dγ , fγ ) by imaginary uniti.

It is important to note that〈T 〉-conjugation does not change the main features of spin states.
In the case of subgroupdγ we can choose any spatial axis as an quantization axis. This is a con-
sequence of the well-known expressions [11] for the raisingand lowering operators of 3-rotation
group:

H+ = ia1−a2,

H− = ia1+a2,

H3 = ia3.

(3.2)

Herea1,a2,a3 ≡ a1a2 are infinitesimal generators of 3-rotation subgroup ofdγ subgroup. All of
them have order equal to four. Therefore, we obtain the equivalence of any spatial axes and value
of the first weight numberl0 = 1/2, which coincides with value of spin s=1/2. This fact together
with the opportunity to formulate the 4-current of probability allows to speak on the description
particles on the basis of subgroupsdγ andbγ with above mentioned spin properties.

We have several other position in a pair of subgroupsfγ andcγ . Here the generators of 3-
rotation subgroup have different orders. One of them has order equal to four, and another one equal
to two. Then, according to the equalities (3.2) only one value of l0 is equal to 1/2. The two others
ones are purely imaginary, i.e. they have no physical meaning. Such an isolated position one of
three possible direction is a cause for spin direction alongor against the impulse of the particle. The
formulation of the 4-vector of current remains possible, but the expression noticeably differs from
one in previous pair of subgroups. Therefore, Pauli equation describes the two types of massless
particles with different spin properties.

4. Different types of manifestations of wave properties

As it is known, the Dirac equation was obtained by decomposition of Klein-Fok-Gordon equa-
tion on the product of two factors. Each of them is an expression in space-time derivatives of the
first order. In our approach, we obtain immediately the linear equations with respect to the first
order derivatives. Therefore reduction to KFG equation is acompulsory and constructive require-
ment. It reveals the fullness of the wave manifestations of particles and imposes restrictions on
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the particles associated with value of speedv ≤ c. Herec is the light velocity. In particular, here
mutually complementary ratios arise: ifm = 0 thanv = c and vice verse, ifm 6= 0 thanv < c.

In the general case, formulation of wave the equation is possible in several ways. For example,
the Dirac equation contains tree connected components i.e.dγ , fγ ,bγ . Each of them can be used for
explicit writing of equation. Most often it is convenient towrite the equation on the basis of proper
representation of Lorentz group. It means thatγ1,γ2,γ3 give rise to subgroupdγ . In this case, we
will call the subgroupdγ the facade of equation. The two other subgroups, namelyfγ andbγ , are
hidden in determining relations, which are well known:γµγν + γνγµ = 2δµν ,(µ ,ν = 1,2,3,4).

In the cited Dirac paper, decomposition of KFG equation was carried out in two identical
factors. Shortly and conditionally, this can be written in the following way:

(KFG) = (...dγ ...)(...dγ ...) (4.1)

Here, in the right part, each factor is the facade for recording of the Dirac equation on the basis of
proper representation of Lorentz group i.e. by means ofdγ group. The left part is the wave equation.
It is suitable for description of any relativistic particles. You need only to take into account the
presence or absence of its masses. All information characterizing the electron or positron is lost
completely into KFG wave equation. Such transition from twolinear equations, describing the
identical particles, to the purely wave KFG equation can be interpreted as necessary condition for
the interference of identical particles.

It turned out that in addition to Dirac’s decomposition of KFG equation, when the two fac-
tors are identical expressions, there are other possible combinations of the factors. In particular,
the transition to the KFG equation is always available for doublet equations, if factors are〈T 〉-
conjugate between themselves. In fact, it means the recording of one factors for particle and second
one for antiparticle. Then it can be written similarly to previous expression:

(KFG) = (MT )(...dγ ...)(...bγ ...). (4.2)

Common multiplier(MT ) appears here in contrast to the expression (4.1). This type of reduction to
the KFG equation is necessary condition for annihilation. The equality of (4.1) type is possible for
any lepton equation. Their number for each equation is equalto number of connected components
of given equation. We will call the two factors as a crossed factors, if they are not identical. In
particular, the factors of (4.2) type we will call〈T 〉-crossed.

As it was already noted, the Pauli equation contains all fourconnected components. Therefore,
an additional opportunities for decomposition of KFG equation on linear factors occurred. If the
faced of the quartet equation is chose on the basis ofdγ subgroup, than equation takes the form
proposed by Pauli [2].

All possible transitions between subgroupsdγ ,bγ , fγ ,cγ are as follows:

〈T 〉dγ = bγ , 〈P〉dγ = fγ , 〈PT 〉dγ = cγ ,

〈T−1〉bγ = dγ , 〈P〉bγ = cγ , 〈T−1P〉bγ = fγ ,

〈T−1〉cγ = fγ , 〈P−1〉cγ = bγ , 〈T−1P−1〉cγ = dγ ,

〈T 〉 fγ = cγ , 〈P−1〉 fγ = dγ , 〈P−1T 〉 fγ = bγ .

(4.3)
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The practical realization of discrete operations is sometimes called the analytical continuation
by group parameters. For the operator〈T 〉 it is reduced to the replacement:

bk → b′k = ibk (k = 1,2,3), (4.4)

wherebk are three generators of transformed group. Each of four subgroupsdγ ,bγ , fγ ,cγ has in
its structure the 3-rotation subgroup, which is defined by two generatorsa1,a2. Operation〈P〉 is
reduced to replacement of only one of them, according to the rule:

a2 → a′2 = ia2. (4.5)

Both above-named operations commute with each other; therefore, their successive action looks
like this: 〈PT 〉= 〈T P〉.

Equations (4.3) and (4.4)-(4.5) allow to get all possible expressions for cross-factors which
are linear in the first derivatives. Reduction to KFG for facade dγ , bγ and their cross-factors
(...dγ ...)(...bγ ...) leads to expressions of the form (4.1) and (4.2).

(KFG) = (...dγ ...)(...dγ ...)⇒ ∂ 2/∂ t2 = ∂ 2/∂x2+∂ 2/∂y2+∂ 2/∂ z2 (4.6)

Here and later common multiplier(1/c2) before space derivatives is omitted.
Similar, but more simple expressions are obtained for factors(... fγ ...)(... fγ ...), (...cγ ...)(...cγ ...)

and cross-factor(... fγ ...)(...cγ ...):

(KFG) = (...cγ ...)(...cγ ...)⇒ ∂ 2/∂ t2 = ∂ 2/∂ z2 (4.7)

Products of〈PT 〉-conjugate factors such as(...bγ ...)(... fγ ...) and(...dγ ...)(...cγ ...) with accu-
racy up to common multiplier have the same form as (4.7).

Another situation is emerged for purely〈P〉-conjugate factors(...dγ ...)(... fγ ...) and
(...bγ ...)(...cγ ...). Here the reduction to KFG equation leads to it non-standardform:

(KFG)⇒ ∂ 2/∂ t2 = ∂ 2/∂ z2+2σz∂ 2/∂ z∂ t (4.8)

Evidently, here information on spin state of initial systemis preserved partially. This can be con-
sidered as a necessary condition for manifestation of spin oscillations.

5. Summary

The study of the massless quartet properties on the basis of general assumptions revealed three
types of wave property manifestations. Such manifestations are interference of the identical parti-
cles, annihilation between the particles, which are interrelated with each other by〈T 〉-conjugation
operation, and oscillations of particles are connected with each other only by〈P〉-conjugation. In
each of three cases it is known that the particles are described by means of one equation or another.
The distinctive features of the massless quartet of particles are that all the three types of wave man-
ifestations are possible. Therefore, it becomes not only does the origin of their differences become
clear, but also their similarities.

Detailing of lepton structures is necessary and important for future applications. In addition,
we correct unnatural situation when based on experiments weassign various properties or some
quantum numbers to leptons without having specific carriersof those characteristics. They can be
named internal properties or symmetries, but the goal is to explain them.
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