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1. Introduction

Hydrodynamics is a very powerful description of systems close to equilibrium. Its focus is
on slowly varying fluctuations with frequency ω and momentum k smaller than the typical length
scale, the mean free path. Hydrodynamics may be seen as the low-energy effective description of
interacting systems. Gauge/gravity duality is a very useful tool to further develop the hydrodynamic
description for various systems.

Here we concentrate on an example of an anisotropic system, the so called backreacted p-wave
superfluid. We start with an Einstein-Yang-Mills action and look at black hole solutions at finite
isospin density. It turns out that depending on the choice of parameters, more precisely on the
ratio of temperature to chemical potential T/µ , we find the well known AdS Reissner-Nordström
black hole solution or a black hole solution with vector hair. The latter spontaneously breaks the
U(1) symmetry due to the chemical potential and the SO(3) rotational symmetry. This can be
related to an anisotropic fluid on the field theory side in which the transport coefficients depend
on the direction, which means they are tensors. In the case we study here the fluid is transversely
symmetric, i.e. the system has an SO(2) symmetry and we can use this symmetry to reduce the
tensors to the minimal amount of independent quantities. For instance, the viscosity which relates
the stress T µν in a fluid with the strain ∇λ uρ +∇ρuλ given in terms of the four velocity of the
fluid uµ is parametrized by a rank four tensor ηµνλρ (see [1]). Using the symmetry we find two
independent components of the shear viscosity tensor, in contrast to only one in the isotropic case
(SO(3) symmetry). Due to the symmetries of our system it turns out that one of the strains related to
one of the shear viscosity components transforms as a tensor under the remaining SO(2) symmetry
while the other one transforms as a vector. This will turn out to be very important for the results
we show in this proceeding.

A very famous result in the context of gauge/gravity duality is that the ratio between shear
viscosity and the entropy density is universal [2–4]. The ratio is the same for all field theories
which have an Einstein gravity dual, which means that the field theory is a large N gauge theory
at infinite ’t Hooft coupling λ . In [5] and [1] we have shown that universality is absent even at
leading order in N and λ if the fluid is anisotropic. In this case, the universality is lost since one of
the different shear modes transforms as a helicity one mode under the rotational symmetry and can
therefore couple to other helicity one modes present in the system. The coupling generates non-
trivial dynamics which lead to a non-universal behavior of the shear viscosity. This result is valid
for a field theory dual to Einstein gravity without additional contributions to the gravity action. The
detailed calculations can be found in [1].

Among the remaining helicity one and helicity zero modes we find some additional transport
phenomena: the thermoelectric effect in the transverse direction (helicity one) as well as in the
direction parallel to the condensate (helicity zero) and the flexoelectric effect (helicity one). For
a detailed study of the helicity one and zero modes see [1, 6]. The thermoelectric effect is the
phenomenon that the electric and heat current mix since charged objects transport charge as well
as energy. The flexoelectric effect is known from nematic liquids which consist of molecules
with non-zero dipole moment (see e.g. [7]). A direction can be preferred by the dipoles. In this
anisotropic phase, a strain can lead to effective polarization of the liquid and an electric field applied
to the liquid can lead to a stress.
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2. Background

For a detailed study of the setup, we use, see [1,8]. Here we give a brief review of its most im-
portant properties. We consider SU(2) Einstein-Yang-Mills theory in (4+1)-dimensional asymp-
totically AdS space. The action is

S =
∫

d5x
√
−g
[

1
2κ2

5
(R−Λ)− 1

4ĝ2 Fa
MNFaMN

]
+Sbdy , (2.1)

where κ5 is the five-dimensional gravitational constant, Λ = −12
L2 is the cosmological constant

(with L being the AdS radius), and ĝ is the Yang-Mills coupling constant. It is convenient to define
α ≡ κ5

ĝ , which measures the strength of the backreaction.
To solve the Einstein and Yang-Mills equations, we use the following ansätze for the gauge

field and the metric, which can be motivated from symmetry considerations [8, 9]

A = φ(r)τ3dt +w(r)τ1dx , (2.2)

ds2 =−N(r)σ(r)2dt2 +
1

N(r)
dr2 + r2 f (r)−4dx2 + r2 f (r)2 (dy2 +dz2) , (2.3)

where N(r) ≡ −2m(r)
r2 + r2

L2 . The AdS boundary is at r→ ∞ and for our black hole solutions we
denote the position of the horizon as rh.

This ansatz is compatible with the well-known AdS Reissner-Nordström solution with w(r) =
0 for all values of r. It preserves the SO(3) symmetry and corresponds to the normal phase of
the system. There is a second solution with non-vanishing w(r), which can only be computed nu-
merically. The second solution breaks the rotational SO(3) symmetry and describes the condensed
superfluid phase. Due to our choice of boundary conditions, this breaking occurs spontaneously.

We express field theory quantities in terms of the boundary values of the fields introduced
above. The temperature T and the entropy density s are given by the values of the fields at the
horizon. From the values at the AdS boundary we identify, using the AdS/CFT dictionary, the
expectation values of the dual operators,

〈J t
3〉 , 〈J x

1 〉 , 〈Ttt〉 , 〈Txx〉 and 〈Tyy〉= 〈Tzz〉. (2.4)

In [8] it was found that the value of the Yang-Mills coupling constant α determines whether
the phase transition between the two solutions described above is second order (α ≤ αc = 0.365)
or first order (α > αc = 0.365). For values above a certain Tc/µ the thermodynamically preferred
solution is the Reissner-Nordström black hole, below this value the solution with a condensate
corresponds to the ground state. For a detailed discussion see [8].

3. Fluctuations and Transport Properties

In this section we present the transport found in the holographic p-wave superfluid under small
perturbations. We split our analysis into distinct transport phenomena. On the gravity side, the per-
turbations are given by fluctuations of the metric hMN(xµ ,r) and the gauge field aa

M(xµ ,r). Thus we
are studying a total of 14 physical modes: 5 coming from the massless graviton in 5 dimensions and
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dynamical fields constraints # physical modes
helicity 2 hyz,hyy−hzz none 2
helicity 1 hty,hxy;aa

y hyr 4
htz,hxz;aa

z hzr 4
helicity 0 htt ,hxx,hyy +hzz,hxt ;aa

t ,a
a
x htr,hxr,hrr;aa

r 4

Table 1: Classifications of the fluctuations according to their transformation under the little group SO(2).
The constraints are given by the equations of motion for the fields which are set to zero due the fixing of the
gauge freedom: aa

r ≡ 0 and hrM ≡ 0. The number of physical modes is obtained by the number of dynamical
fields minus the number of constraints. Due to SO(2) invariance the fields in the first and second line of the
helicity one fields can be identified.

3×3 from the massless vectors in five dimensions. Due to time and spatial translation invariance
in the Minkowski directions, the fluctuations can be decomposed in a Fourier decomposition as

hMN(xµ ,r) =
∫ d4k

(2π)4 eikµ xµ

ĥMN(kµ ,r) and aa
M(xµ ,r) =

∫ d4k
(2π)4 eikµ xµ

âa
M(kµ ,r) . (3.1)

In the following we also set the spatial momentum~k = 0. Thus we can classify the fluctuations
under the remaining SO(2) rotational symmetry still present in our system (see table 1).

3.1 Thermoelectric Effect

In the system at hand we find 2 thermoelectric effects, one perpendicular to the condensate
(helicity one) and one parallel to the condensate (helicity zero). The coupling between thermal and
electrical transport is well known in condensed matter physics, since the charge carriers (electron
or holes) transport charge as well as heat. The fields on the gravity side related to this effect are
a3
⊥ and ht⊥ in the transverse direction and a3

x and htx in the parallel direction. Note that two more
fields, a1

t and a2
t couple to a3

x in the latter case. However, in this proceeding we are not interested
in these couplings, for a discussion on the matter see [6].

We begin with the well known connection between electrical 〈J⊥/x
3 〉 = 〈J⊥/x〉 and thermal

〈Q⊥/x〉= 〈T t⊥/tx〉−µ〈J⊥/x〉 transport1, i.e.(
〈J⊥/x〉
〈Q⊥/x〉

)
=

(
σ⊥⊥/xx T α⊥⊥/xx

T α⊥⊥/xx T κ̄⊥⊥/xx

)(
E⊥/x

−(∇⊥/xT )/T

)
, (3.2)

where the electric field E⊥/x and the thermal gradient−∇⊥/xT/T are related to the boundary values
of the gauge field a3

⊥/x and the metric ht⊥/tx (For the precise relation see [1,6]). Putting all together
and comparing the relation of the electric and thermal transport to the corresponding quantities on
the gravity side, we can identify the transport matrix of (3.2),

σ =− iG3,3

ω
, T α =

i
ω
〈J t

3〉−µσ , T κ̄ =
i
ω

(
〈Ttt〉−2µ〈J t

3〉
)
+µ

2
σ . (3.3)

Note that these equations are valid for both directions, parallel and transverse to the condensate.

1We use curly notation (J , T ) for the currents in thermal equilibrium and normal letters (J, T ) for currents includ-
ing the dissipative terms.
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Figure 1: Real part of the conductivity Re(σ⊥⊥/xx) over the frequency ω/(2πT ) for α = 0.316. For a
description and comparison of the plots see text below.

In figure 1 we plot our numerical results for Re(σ⊥⊥/xx) versus the frequency ω/(2πT ) for
α = 0.316.αc. For large frequencies, i. e. ω� 2πT , in both cases the conductivity asymptotically
has a linear dependence on the frequency, i.e. Re(σ⊥⊥/xx)∼ ω for ω � 2πT .

For small temperatures (T < Tc) we see a gap opening up at small frequencies. The size
of the gap increases as the temperature is decreased. This is the expected energy gap we know
from superconductors. The gap ends at a frequency ωg with a sharp increase of the conductivity
transverse to the condensate. In comparison, the increase with the frequency in the case parallel
to the condensate is more shallow. Beyond the gap the conductivity transverse to the condensate
at small temperature (T < Tc) is larger than the corresponding value at large temperature (T >

Tc) such that the small temperature conductivities approach the asymptotic behavior from above.
This is opposed to the parallel case where the asymptotic value is approached from below for all
temperatures.

The value of Re(σ⊥⊥) at ω = 0 approaches zero with decreasing temperature. Below Tc the
tendency for this part of the conductivity to vanish increases. Nevertheless, we still find finite values
even below Tc, i.e. these values seem to be suppressed but not identically vanishing (c.f. [10]).
Finally, we observe that an increase in α leads to a stronger suppression of the real part of the
conductivity in the gap region.

The real part of σ xx, as opposed to the perpendicular case, increases again for small but finite
frequencies and reaches a finite value in the ω→ 0 limit, as seen in the zoomed region of figure 1(b).
This increase in the real part in the zero frequency limit is due to a quasinormal mode which moves
up the imaginary axis in the complex frequency plane and seems to reach the origin ω = 0 at
temperatures slightly above 0.5Tc. The increase we see towards the ω → 0 limit comes from the
projection of the quasinormal mode onto the real frequency axis. Note that this bump increases
with decreasing temperature. Unfortunately it is challenging to compute the exact temperature at
which the mode reaches the origin, since we have to rely on numerical calculations. Nevertheless,
for temperatures below 0.5Tc it appears that a pole in the real part of the conductivity is formed
and at the same time the real part of the conductivity gets more strongly suppressed at finite small
frequencies in comparison to cases of temperatures above 0.5Tc (see the green and orange curve in
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the zoomed region of figure 1(b)). It seems that somewhere around 0.5Tc, due to the quasinormal
mode at the origin, the conductivity behavior in the direction of the condensate changes.

Due to the sum rule for the conductivity, i.e. the frequency integral over the real part of the
conductivity is constant for all temperatures, a delta peak has to form at zero frequency which
contains the “missing area” of the gap region. The strength of the delta peak has two contributions:
the first is proportional to the superfluid density n⊥/x

s , Re(σ⊥⊥/xx)∼α2/κ2
5 πn⊥/x

s δ (ω) and appears
only for temperatures below Tc. The second contribution, the Drude peak, is a consequence of
translation invariance of our system and appears for all temperatures.

The delta peak is observed in the imaginary part of the conductivity by using the Kramers-
Kronig relation (see [10]),

Im(σ⊥⊥/xx)' A⊥/x
D (α,T )

ω
+

A⊥/x
s (α)

ω

(
1− T

Tc

)
, (3.4)

for T . Tc, with As(α)
(

1− T
Tc

)
∝ ns and AD parametrizing the contribution from the Drude peak.

We see both contributions in both cases, however, with different magnitudes, e.g. by plotting
ωIm(σ⊥⊥/xx) (see [1, 6]).

3.2 Non-Universal Shear Viscosity and Flexoelectric Effect

In this section we present the transport generated by the remaining three components of the
helicity one modes, a±⊥ = a1

⊥± ia2
⊥ and hx⊥ which are related to the field theory expectation values

〈J⊥± 〉 and 〈T x⊥〉. We first focus on 〈T x⊥〉, which for
(
a±⊥
)b

0 = 0 can be translated into the following
dual field theory behavior

〈T x⊥〉=−〈Txx〉hx⊥− iωηx⊥hx⊥ , (3.5)

where ηx⊥ is the second shear viscosity which is present in a transverse isotropic fluid and with
〈Txx〉 as defined in (2.4). Here we see that we can apply the Kubo formula to determine the shear
viscosity ηx⊥,

ηx⊥ =− lim
ω→0

1
ω

Im
(

Gx⊥,x⊥
)
. (3.6)

As described in [1, 5], this shear viscosity has a non-trivial temperature dependence even in the
large N and large λ limit and is therefore not universal. In fig. 2 we compare our numerical results
for the ratio of the shear viscosity ηx⊥ to the entropy density s with the universal behavior2 of the
shear viscosity ηyz for different values of α . We see that in the normal phase T ≥ Tc, the two
shear viscosity components coincide as required in an isotropic fluid. In addition, the ratio of shear
viscosity to entropy density is universal. In the superfluid phase T < Tc, the two components of
the shear viscosity tensor deviate from each other and ηx⊥ is non-universal. However it is exciting
that ηx⊥/s ≥ 1/4π , such that the KSS bound on the ratio of shear viscosity to entropy density [2]
is still valid.

The difference between the two viscosity components in the superfluid phase is controlled by
α as defined in section 2. In the probe limit where α = 0, the shear viscosities also coincide in the

2ηyz is generated by the minimally coupled scalar field hy
z. Therefore ηyz/s = 1/4π for all temperatures and values

of α (see [4]).
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Figure 2: Ratio of shear viscosities ηyz and ηx⊥ to entropy density s over the reduced temperature T/Tc for
different values of the ratio of the gravitational coupling constant to the Yang-Mills coupling constant α .
The color coding is as follows: In yellow, ηyz/s for all values of α; while the curve for ηx⊥/s is plotted in
green for α = 0.032, red for α = 0.224 and blue for α = 0.316.

superfluid phase. By increasing the backreaction of the gauge fields, i. e. rising α , the deviation
between the shear viscosities becomes larger in the superfluid phase as shown in fig. 2. If α is
larger than the critical value αc = 0.365 found in [8] where the phase transition to the superfluid
phase becomes first order, the shear viscosity components are also multivalued close to the phase
transition (see [1]). There is a maximal α denoted by αmax = 0.395 for which the superfluid
phase exists, thus we expect that the deviation of the shear viscosity ηx⊥ from its universal value
is maximal for this αmax. Unfortunately numerical calculations for large values of α are very
challenging such that we cannot present satisfying numerical data for this region.

As described in our letter [5], we also have found numerically that for α < αc

1−4π
ηx⊥

s
∝

(
1− T

Tc

)β

with β = 1.00±3% . (3.7)

Interestingly, the value of β appears to be independent of α . This result has been confirmed by an
analytic calculation in [11].

The non-universality of this component of the shear viscosity is due to the coupling between
hx⊥ and a1

⊥, which does not vanish in the ω → 0 limit. This is in contrast to the universal case
generated by the fluctuation hyz. Note that the coupling depends on the condensate w and therefore
vanishes in the unbroken case. Hence, as we confirm numerically in fig. 2, in the unbroken case
(T > Tc) we obtain for both components the universal result.

In addition to the flavor conductivity and the shear viscosity we obtain a coupling between the
stress 〈T x⊥〉 and the flavor fields a±⊥ as well as the currents 〈J⊥± 〉 and the strain hx⊥. This coupling
introduces an effect which is called flexoelectric effect in nematic crystals [7] and only appears
in fluids with broken rotational symmetry. We have a current 〈J x

1 〉 in a favored direction in the
background which interacts with the flavor fields a±⊥. This interaction induces a force on the current
which pushes the current in its perpendicular direction generating the stress 〈T x⊥〉. In the similar
way, a strain hx⊥ introduces an inhomogeneity in the current 〈J x

1 〉 resulting in a flavor field a±⊥
which generates the currents 〈J⊥± 〉. For a detailed discussion see [1].
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4. Conclusion

We have presented some of the transport properties found in a holographic p-wave superfluid
with backreaction. It turns out that due to the backreaction and the breaking of the rotational sym-
metry many different transport phenomena can be studied. For instance, we have shown that one
of the two shear viscosity components when divided by the entropy density displays a temperature
dependence, whereas the other component is constant and takes the well known universal value of
1/4π . Note that the departure from the universal value is found at leading order in large N and
large ’t Hooft coupling λ . Furthermore the differences between the thermoelectric effect in direc-
tion transverse and perpendicular to the condensate were presented. Finally, we have seen an effect
similar to the flexoelectric effect, i.e. coupling between a strain and an electric field. However, in
our case we have a coupling between a strain and flavor fields. For a detailed analysis of the effects
presented here see [1, 5, 6].
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