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1. Introduction

Description of the nucleon-nucleon interaction, the basic ingredient of nuclear physics, di-
rectly from quantum chromodynamics (QCD) is a daunting task. The breakdown of the pertubative
expansion in terms of the QCD gauge coupling g necessitates the use of alternative methods. One
such method proposed by ’t Hooft in 1974 is to consider a QCD-like theory with the number of
colors Nc and the gauge group SU(Nc), large Nc QCD [3]. The observables in large Nc QCD are
expanded in powers of 1/Nc around the large Nc limit, g → 0, Nc → ∞ and finite g2Nc. In addi-
tion, it is assumed that large Nc QCD is a confining theory and the asymptotic states are SU(Nc)

singlets. Despite our inability at present to evaluate even the leading order terms, a great deal
of insight comes from knowledge of the scaling of hadronic observables in powers of 1/Nc. The
phenomenological implications of large Nc QCD are essentially topological in nature.

The description of the meson and baryon observables in the large NC limit requires different
methods. Formally, it is due to the fact that the correlation functions in the meson sector have a
smooth expansion in powers of 1/Nc while the correlation functions in the baryon sector diverge in
the large Nc limit. Physically, it is due to the fact that as shown by ’t Hooft, the QCD in the large
Nc limit is a theory of an infinite number of stable non-interacting mesons.1 The meson masses and
sizes are independent of Nc. This picture is phenomenologically satisfactory since in the real world
mesons interact weakly.

QCD is also a theory of strongly interacting baryons, the states carrying quantum numbers of
the odd number of quarks. As was shown by Witten [4], a consistent large Nc description of strongly
interacting baryons is possible. Remarkably, the same feature which on the one hand makes an
analysis of the baryons in the large Nc limit far more challenging than that of mesons, on the other
hand allows one to apply a well-known method of nuclear physics, the semiclassical mean-field
theory. Indeed, as argued by Witten, baryons in the large Nc limit contain Nc quarks with n-quark
force scaling as N1−n

c . Thus, one can treat this weakly interacting many-body state in a mean-field
approximation. Unfortunately, the explicit treatment is only available for heavy non-relativistic
quarks, in which case the mean-field treatment corresponds to the Hartree approximation [5]. The
picture that arises from such a treatment is that of a baryon with a mass of order of Nc and a size
and shape which are independent of Nc. Despite the fact that explicit mean-field treatment in the
case of the light quarks is unknown, the large Nc scaling for baryon observables is expected to be
valid.

Witten realized [4] that the above scaling of mesons and baryons indicates that the baryons
in large Nc limit arise as quantized soliton-like configurations of mesonic fields. A particular
model which satisfies the large Nc scaling is a well-known Skyrme model [6]. In this model the
baryons appear as quantized skyrmions, the topological solitons of a particular non-linear mesonic
lagrangian[7]. The stability of baryons as quantum solitons is due to the existence of conserved
topological current [8, 9].

In addition to a single-baryon sector, it is of great interest to consider baryon-baryon interac-
tion in the large Nc limit. Since the baryon mass diverges in the large Nc limit the baryon-baryon
scattering observables don’t have a smooth limit for scattering at fixed center-of-mass energy and
momentum transfer. For such momentum, p ∼ Nc, one instead focuses on the potential between

1Additionally, the spectrum of large Nc QCD contains glueballs with vanishing mixing to mesons

2



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
2
4
6

Nucleon-Nucleon Scattering and Large Nc QCD Boris A. Gelman

two baryons which scales as Nc. In this context, the large Nc scaling rules had been used to analyze
the spin-flavor structure of the nucleon-nucleon potential [10]. In particular, it was shown that at
leading order the nucleon-nucleon potential is symmetric under contracted SU(4) spin-flavor sym-
metry [11]. In addition, one can also address a question of consistency of the meson-exchange
picture of the nucleon-nucleon potential [12, 13].

The focus of the present talk is on the kinematic regime corresponding to a fixed center-of-
mass velocity. In this case, both the kinetic and potential energy of two baryons are of order Nc,
and thus one expects a smooth limit to exist for the scattering cross-section. As argued by Witten
[4], here, as in the case of the single-baryon sector, the appropriate framework is the mean-field
description. However, in this case one has to use time dependent mean-field theory (TDMFT).
As was shown in [2], one can discuss the spin-flavor structure of the total nucleon-nucleon cross
section at leading order in large Nc expansion. As in the case of the nucleon-nucleon potential, the
emergent contracted SU(4) spin-flavor symmetry leads to certain relations between total proton-
proton and proton-neutron cross sections. It will be shown in section 3 that these relations satisfy
the behavior of the experimental nucleon-nucleon cross sections at the center-of-mass energies of
order of a few GeV.

2. Time Dependent Mean Field Theory Framework

The goal here is to show that time-dependent mean-field theory (TDMFT) framework valid in
the large Nc limit, and contracted SU(2N f ) symmetry, where N f is the number of light quark fla-
vors, to make model-independent predictions about the spin-isospin structure of the total nucleon-
nucleon cross sections. As discussed above, TDMFT treatment is a valid framework for the
nucleon-nucleon scattering when the center-of-mass transfer momentum is p ∼ Nc. Since the nu-
cleon size and hence the size of the interaction region are of order of N0

c , the scattering in this
kinematic regime is semi-classical.

The description of interaction by TDMFT methods requires time-averaging over all field con-
figurations consistent with the initial state of two nucleons. This precludes one from being able
to calculate the S-matrix elements [14, 15]. However, as shown in [2], there are certain inclusive
nucleon-nucleon observables which can be evaluated in TDMFT framework. One such observable
can be formed from conserved baryon current whose expectation value in the initial two-nucleon
state can be in principle evaluated. The expectation values of the baryon current can be related to
the inelastic differential cross section.

In TDMFT framework each quark and gluon field of two nucleons move in a time-dependent
field created by all other quarks and gluons. These equations are not known explicitly. As a result,
one can not determine the nucleon-nucleon cross section even in the large Nc limit. However,
it is possible to determine the spin-isospin dependence of the cross section using the contracted
SU(4) symmetry valid in the large Nc limit. Since the focus here on spin-isospin dependence of
the nucleon-nucleon scattering, one can use the Skyrme model which encapsulates the spin-flavor
structure of large Nc baryons [16].

In the Skyrme model the nucleon dynamics is described in terms of classical soliton config-
urations built out of pion fields. A convenient form for such a soliton is given by SU(2)-valued
matrices Uh(⃗r) = exp(i⃗τ n̂F(r)), where τa are Pauli matrices, n̂ = r⃗/r and F(r) is the magnitude
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of the pion field, F(r) = |⃗π(r)| [7]. Such classical configurations impose correlations between
spacial and isospin rotations and they are referred to as hedgehogs. The baryons appear after the
quantization of classical hedgehogs. This is done by quantizing the slow rotation of the hedgehog
in isospin space, A†(t)Uh(⃗r)A(t), given by the time-dependent SU(2) matrix A(t). These rotations
describe the slow collective degrees of freedom of the hedgehog, the zero-modes [17, 18]. After
quantization, the generators of these vibrations proportional to Tr

(
τa ˙A(t)A†(t)

)
correspond to the

spin and isospin quantum numbers of the the ground-state band of states, I = J = 1/2,3/2, ...Nc/2
in the large Nc limit. The first two states correspond to nucleon and ∆ baryons. The masses of these
states are degenerate up to the terms I(I+1)/MB ∼ 1/Nc. This is a representation of the contracted
spin-flavor symmetry SU(4) in the context of the Skyrme model. The spin-isospin dependence
of the wave-function of these states is given by Wigner matrices DI=J

m,m′(A) where m,m′ are the
third components of spin and isospin respectively. Note that the Wigner matrices are functions of
parameters of collective rotations A and not on Ȧ(t).

A crucial consequence of the above semi-classical analysis of the single-baryon sector in the
Skyrme model is the appearance of the scale separation in the dynamics of the collective degrees of
freedom described by the Wigner matrices DI=J

m,m′(A) at leading order in 1/Nc and intrinsic degrees
of freedom which describe all other non-collective excitations which include excited states of the
ground states baryons and mission of virtual and real mesons. The frequency of the collective
excitations are of order 1/Nc while that of the intrinsic excitations are of order N0

c . This scale
separation enables an adiabatic or treatment of the collective degrees in the context of TDMFT
treatment of the nucleon-nucleon scattering analogous to the Born-Openheimer approximation in
the context of the rotational and vibrational excitations of molecules. There the slow degrees of
freedom correspond to vibrations of atomic nuclei in the averaged field produced by electrons
whose motion represent the intrinsic excitations.

To obtain an observable describing the nucleon-nucleon scattering one can start with a function
which describes the initial state of two well separated hedgehogs corresponding to the initial state
of two nucleons. As discussed in [2], in the context of the Skyrme model it is convenient to
choose a conserved baryon current Jµ

(⃗
r, t;A1,A2,v,⃗b, n̂

)
. In the Skyrme model it is a topological

invariant. The dependence of the current on the collective degrees of freedom are described by the
variables, A1,A2,v,⃗b, n̂ where A1,A2,v,⃗b, n̂ define the spin and isospin configuration, the center-of-
mass speed, impact parameter and the unit vector along the direction separating the centers of the
two hedgehogs at the initial moment. The initial distance is not indicated. Such parametrization
corresponds to the semi-classical description of the scattering which as discussed above is valid
in the large Nc limit. The functional dependence of this current can only be determined once the
explicit form of TDMFT equations is known. However, as shown below one does not need to know
these equations to determine the spin-isospin structure of the corresponding scattering observable.
This structure is determined by transformational properties of the current under the spin and isospin
rotations which is determined by the contracted sin-flavor symmetry.

As shown in [1, 2], the classical current can be turned into a differential cross section by
integrating the current Jµ

(⃗
r, t;A1,A2,v,⃗b, n̂

)
over time and the impact parameters,

dσinc(v,A1,A2;θ ,ϕ)
dΩ

= lim
R→∞

R2
∫ ∞

0
db(2πb)

∫ ∞

0
dtr̂(θ ,ϕ) · J⃗

(
Rr̂(Ω), t;A1,A2,v,⃗b, n̂

)
, (2.1)
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The above equations gives the probability for one hedgehog to emerge in a cone with a solid angle
dΩ around a direction given by polar angles θ and ϕ . The current in Eq. (2.1) is normalized as to
give the total baryon number two. The time t = 0 in Eq. (2.1) corresponds to the time at which two
hedgehogs have the smallest separation. The integral in Eq. (2.1) can be explicitly evaluated only
when TDMFT equations are known. It is also important to note that the probability in Eq. (2.1) is
integrated over all outgoing meson degrees of freedom. In the final analysis it will give the inelastic
cross section.

To turn the probability in Eq. (2.1) into a nucleon-nucleon cross section one needs to evaluate
an expectation value of dσinc/dΩ in an initial two-nucleon state described by spin and isospin
projections m1,mI

1 and m2,mI
2 on the direction given by the unit vector n̂. It can be done due

to the scale separation between the collective and intrinsic degrees of freedom discussed above.
Indeed, the semiclassical quantization of the baryon current in Eq. (2.1) leads the appearance of
the terms proportional to J2/MN and I2/MN , where MN is the nucleon mass. These terms represent
coupling between the collective and intrinsic excitations. However, as discussed above these terms
are of order 1/Nc and do not contribute at leading order in the 1/Nc expansion. This result allows
one to find expectation values of the inclusive cross section using the superposition of the initial
hedgehogs described by the collective variables A1 and A2 weighted by the corresponding Wigner
D-matrix. In other words, the spin-isospin part of the nucleon wave function in the initial state with
given quantum numbers m,mI is

|mJ,mI >=
∫

dA D1/2
m,mI (A) |A >, (2.2)

where |A > represents a hedgehog with particular orientation in spin-isopsin space, D1/2 is the
Wigner D-matrix describing spin-isospin coordinates of the nucleon, and the integral is taken over
the space of the collective coordinates.

Using Eq. 2.2 one can find the inclusive (integrated over all mesons in the final state) nucleon-
nucleon differential cross section at leading order in 1/Nc expansion,

dσ (m1,mI
1,m2,mI

2)(v,θ ,ϕ)
dΩ

=
∫

dA1dA2|D1/2
m1,mI

1
(A1)|2|D1/2

m2,mI
2
(A2)|2

dσinc(v,A1,A2;θ ,ϕ)
dΩ

, (2.3)

where the dσinc(v,A1,A2;θ ,ϕ)/dΩ is given in Eq. (2.1). In Eq. (2.3), m1,mI
1,m2,mI

2 are the spin
and isospin components of two nucleons along the direction n̂ which can be taken as the beam axis.

It is possible now to find a general form of the inclusive differential cross section at leading
order in 1/Nc by integrating over the impact parameter space in Eq. (2.1) and SU(2) measure in
Eq. (2.3). The resulting expression found in [1] is

dσ (m1,mI
1,m2,mI

2)(v,θ ,ϕ)/dΩ =

a0(v,θ ,ϕ)+bI(v,θ ,ϕ) (σ⃗1 · σ⃗2) (⃗τ1 · τ⃗2)+ cI(v,θ ,ϕ) (σ⃗1 · n⃗)(σ⃗2 · n⃗) (⃗τ1 · τ⃗2) , (2.4)

where σ i and τa are the spin and isospin Pauli matrices corresponding to the two initial nucleons,
and the functions a0, bI and cI encode the leading order behavior at large Nc. In obtaining the result
in Eq. 2.4 the following identity of the Wigner D-matrices was used,(

DJ
m,n
)∗

= (−1)m−nDJ
−m,−n . (2.5)
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Equation (2.4) represents an inclusive differential cross section at leading order in 1/Nc expan-
sion. However, more readily available is the data for total inelastic nucleon-nucleon cross section.
To obtain the total cross section one should integrate the differential cross section over the whole
solid angle. In doing so one obtains the following expression,

σ (m1,mI
1,m2,mI

2)(v) = A0(v)+BI(v) (σ⃗1 · σ⃗2) (⃗τ1 · τ⃗2)+CI(v) (σ⃗1 · n⃗)(σ⃗2 · n⃗) (⃗τ1 · τ⃗2) , (2.6)

where

A0(v) = 1/2
∫

dΩa0(v;θ ,ϕ), BI(v) = 1/2
∫

dΩbI(v;θ ,ϕ), CI(v) = 1/2
∫

dΩcI(v;θ ,ϕ).

The factor of 1/2 in the above equations are due to the normalization of the baryon current.
However, while formally integrating over the solid angle to obtain Eq. (2.6) we did not consider

that as discussed above the TDMFT treatment from which the differential cross section in Eq. (2.3)
was derived strictly holds only in the semiclassical limit. As is well-known, [19] the semiclassical
approximation breaks down for small forward angles for which θ ≤ 1/RpN , where R ∼ N0

c is a size
of the interaction potential which is of the order of the nucleon size, and pN ∼ Nc is the center-of-
mass momentum. Thus, the forward angle at which the semiclassical approximation breaks down
is of order of 1/Nc in the kinematic region of interest here. However, the total cross section in
Eq. (2.6) includes both forward and backward angles for which the semiclassical approximation
breaks down.

However, as shown in details in [1] the contribution to the total cross section from the forward
angles θ ≤ 1/Nc vanishes as 1/Nc in the large Nc limit provided the scattering cross section is not
anomalously peaked in a vanishingly small forward direction. The latter would require large elastic
contribution. Thus, the total cross section given in Eq. (2.6) is valid up to corrections of order Nc.

The key result of the above discussion is the form of total nucleon-nucleon cross section given
in Eq. (2.6) which is valid up to corrections of order 1/Nc. While the Skyrme model has been used
in the derivation, the result is independent of the details of the model and are valid in the large Nc

limit. All the details of the dynamics for which the explicit TDMFT equations have to be used are
in the functions A0(v), B0(v) and C0(v) which are of order one in the large Nc limit. These functions
can not be determined explicitly at present time. Nevertheless, the form of the total cross section in
Eq. (2.6) does contain testable predictions. Note that it is not the most general form which can be
obtained based on parity and time reversal invariance. For example, it does not contain such terms
as AI (⃗τ1 · τ⃗2) and B0 (σ⃗1 · σ⃗2). These terms do not appear at leading order in 1/Nc. This result
does not depend on the details of the Skyrme but follows from the contracted spin-flavor symmetry
SU(4) applied to the two-nucleon sector.

This result can be tested against the existing experimental data for total nucleon-nucleon cross
sections. This is done in the next section [1].

3. Comparison with experimental data

The experimental data exists for the total spin-independent and polarized proton-proton and
proton-neutron cross sections [20]. The kinematic regime in which the result obtained above is
expected to be valid corresponds to the center-of-mass momentum above 1GeV .
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Figure 1: Spin-averaged proton-proton and neutron-proton total cross section as a function of beam mo-
mentum (Bugg et al., 1996).

The total nucleon-nucleon cross section given in Eq. (2.6) contains the total nucleon-nucleon
cross sections for isosinglet and isotriplet initial states,

σ (m1,mI
1,m2,mI

2)(v) =

(
σ (I=0) 0

0 σ (I=1)

)

Using projection operators (1− τ⃗1 · τ⃗2)/4 and (3− τ⃗1 · τ⃗2)/4, one can extract σ (I=0) and σ (I=1)

cross sections. Then one obtains the total proton-proton, σ pp = σ (I=1), and neutron-proton cross
sections, σnp = 1

2

(
σ (I=1)+σ (I=0)

)
. Thus, at leading order in 1/Nc one has the following expres-

sions,

σ (pp) = A0 +BI (σ⃗1 · σ⃗2)+CI (σ⃗1 · n⃗)(σ⃗2 · n⃗)
σ (np) = A0 −BI (σ⃗1 · σ⃗2)−CI (σ⃗1 · n⃗)(σ⃗2 · n⃗) . (3.1)

Recall that in the above equations n⃗ represents the beam axis. Using Eq. (3.1) and averaging over
the spin-polarization of the beam and target nucleons, one can obtain spin-averaged total cross
sections. Thus, at leading order we have the following relation,

σ (pp)
0 = σ (np)

0 (1+O(1/Nc)) , (3.2)

where σ0’s are the spin-averaged total cross sections. This prediction follows from the large-
Nc analysis and cannot be obtained simply from isospin invariance. This large-Nc result is well
satisfied by the experimental data shown in Fig. 1.

The total cross sections for the case when beam and target nucleons are transversely polarized
relative to the beam direction can also be obtained. Two configurations are possible, ↑↑ and ↑↓.
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(a) ∆σT
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(b) ∆σL

Figure 2: ∆σT for neutron-proton (Fonteine et al., 1991) and proton-proton (Ditzler et al., 1983; Lesikar, J.
D. 1981) scattering, and ∆σL for proton-proton (Auer et al., 1978), and neutron-proton (Sharov et al., 2008)
scattering as functions of beam momentum.

These can be combined into an observable, ∆σT = −(σ(↑↑)−σ(↑↓)) referred to as delta sigma
transverse.

Analogously, for the the longitudinally polarized beam and target nucleons one can extract an
observable, ∆σL =−(σ(⇒)−σ(�)), the delta sigma longitudinal.

The large-Nc analysis, Eq. (3.1), predicts the following results for these observables,

∆σ (pp)
T = −∆σ (np)

T (1+O(1/Nc)) ,

∆σ (pp)
L = −∆σ (np)

L (1+O(1/Nc)) . (3.3)

Experimental data for these observables is shown in Figs. 2(a) and 2(b). One may conclude
from Figs. 2(a) and 2(b) that the large Nc results given in Eq. (3.3) are not satisfied by data.
However, the results are valid within corrections of order Nc. Indeed, according to Eq. (2.6) both
σ0 and ∆σT and ∆σL are of the same order in 1/Nc. Experimentally however ∆σT and ∆σL are
much smaller then σ0. The latter are about 40mb while the former are consistent with zero. The
suppression of ∆σT and ∆σL are for reasons not predicted by large-Nc analysis. Nevertheless,
qualitatively the predictions are valid since ∆σT and ∆σL are small for both pp and np scattering.
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