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1. Introduction

The hydrodynamical description of heavy ion collisions at RHIC and at LHC has led to a
tremendous phenomenological success. However, the hydrodynamical treatment can be justified
only if the matter created in the collision is near local thermal equilibrium (or more precisely close
to local isotropy). At the initial stages of the collision, this condition is clearly violated and it is
an open theoretical question, how quickly — and how — the matter approaches equilibrium. It is
crucial to understand this prethermal evolution as our ignorance of it constitutes one of the largest
systematic uncertainties in analysis of the heavy-ion collisions.

In [1], we have addressed this problem in the most theoretically clean limit — that of large
nuclei at asymptotically high energy per nucleon, where thesystem is described by weak-coupling
QCD. When the typical energy scale right after the collisions is largeQs≫ ΛQCD, the renormalized
strong coupling constant becomes smallα(Qs)≪ 1. In this limit, the initial condition for the col-
lision is understood in the color glass condensate (CGC) framework [2]. In [1], we have identified
the most important physical processes, in theα ≪ 1 limit, that drive the evolution from the initial
strong and anisotropic CGC fields to the thermal state in the longitudinally expanding geometry of
a heavy-ion collision. Our solution resembles the original“Bottom-Up” thermalization [4], with
the difference that it takes into account the physics of plasmainstabilities [5].

The evolution proceeds in three stages. The first stage (1≪ Qsτ ≪ α− 8
7 ) is characterized by

strong fields, or equivalently high occupancies (f ≫ 1). It is a competition between the longitudinal
expansion that drives the system towards larger anisotropies (〈|p⊥|〉 ≫ 〈|pz|〉 ≡ αd〈|p⊥|〉) and
weaker fields, and momentum broadening due to interactions that works towards isotropizing the
fields. The result of this competition is that the anisotropyincreases and the occupancies decrease
as a function of time.

During the second stageα− 8
7 ≪ Qsτ ≪ α− 12

5 , the system is highly anisotropic but the typical
modes are now under-occupied,f ≪ 1. The cross-over from high to low occupancy changes quali-
tatively the system’s behavior: inelastic scattering begins to increase particle number. In particular,
soft inelastic emissions create a bath soft gluons that eventually becomes nearly thermal. During
this stage, the soft protothermal bath does not dominate anything; the primordial hard particles
carry the most energy, inflict most screening, are more numerous, and cause the most scattering.

Eventually the soft protothermal bath will, however, startto dominate the physics, and in
particular the momentum broadening experienced by the hardparticles. This is the third stage
α−12/5 ≪ Qsτ ≪ α−5/2. During this stage the hard anisotropic particles still carry most of the
energy density of the system (and hence dominateTµν , relevant for hydrodymamics), but they
effectively decouple from each other as the dominant interaction is with the bath of soft particles;
the hard particles can be seen as few but highly energetic “jets” propagating in a nearly thermal
medium. The thermalization then proceeds through quenching of these jets: interaction with the
protothermal medium leads to hard collinear splitting and therefore to radiative energy loss. Once
the hard modes have had time to lose all their energy to the medium (by the timeQsτ ∼ α−5/2), all
that is left is the nearly thermal bath of soft modes, and the system has essentially thermalized.

Throughout the evolution, the dominant interaction between the hard particles, and between
the hard particles and the protothermal bath, takes place via plasma (or Chromo-Weibel) unstable
modes: in an anisotropic system, a set of long-wavelength chromo-magnetic fields is perturbatively
unstable and the unstable modes undergo an exponential growth until they become non-perturbative
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(with f (kinst)∼ 1/α) and saturate. When hard particles propagate through a stochastic background
of these saturatedB-fields, they exchange momentum with theB-fields due to Lorentz force. As
theB-fields are at long scales incoherent, this momentum transfer is diffusive and is described by a
(time dependent) momentum diffusion coefficient ˆqinst ∼ dp2/dt. This q̂ turns out to be larger than
that arising from ordinary elastic scattering at all stagesof thermalization.

During the first and second stages, the most important instabilities are those due to the hard par-
ticles. The soft protothermal bath is also sightly anisotropic (because of expansion and anisotropic
“rain” of soft particles arising from splitting of the anisotropic hard particles), and during the third
stage it is the magnetic fields that became unstable because of the protothermal bath that dominate
the momentum transfer.

Here, we discuss these three stages in slightly more detail,but with much less detail than [1],
concentrating only on the dominant scales.

2. Initial condition in heavy ion collisions: Color-Glass-Condensate

In the weak coupling limit, the very early dynamics are well understood in the color glass
condensate (CGC) framework [2]. It indicates that at timeQsτ ∼ 1, the system consists of intense,
nearly boost invariant gluon fields, with a coherence lengthlcoh ∼ Q−1

s in thexy-plane transverse
to the beam axis, and a much longer coherence length in thez-direction along the beam axis, and
that the energy density of the system ise(τ ∼ Q−1

s )∼ Q4
s/α .

At timesQsτ > 1, the fields have lost phase coherence, and can be described in terms of particle
degrees of freedom. The corresponding distribution function of gluons can be parametrized by1

f (~p)∼ α−cθ(Qs−|p|)θ(αdQs− pz), d > 0 (2.1)

wherec describes the typical occupation number, andd parametrizes the anisotropy. In terms of
these descriptors, the energy density condition implies that on thecd-plane, at timesQsτ & 1, the
system lies on ad = c−1 line, as shown in Fig. 1. We take this as our initial condition.

Where precisely on the line the initial condition sits is a matter of taste. Both, our description
and that within CGC framework [3], displays that the system evolves toO(1) anisotropy in a time
τ ∼ Q−1

s × (logs ofα). Therefore, at timesτQs ≫ 1, but less than any negative power ofα , the
system hasc= 1 andd = 0.

3. Evolution to small occupancies1≪ Qsτ ≪ α−12/5

As long asc = 1 and d = 0, the dynamics of the system are fully non-perturbative, and
amendable only to non-perturbative (yet classical) simulations [3, 6]. However, the system is only

1Theθ -functions should not be interpreted as sharp step functions but rather as smooth momentum cutoffs so that
the actual form of the distribution is such that high momentum particles withp > Qs do not dominate anything,i.e.
f (p > Qs) < (Qs/p)4. This ansatz for the distribution is accurate enough for parametric estimates (of powers ofα),
for full numerical description one needs to consider theO(1) details of the distribution function. Also, it assumes that
the physics of the system is dominated by a single scale only,which need not to be the case. However, multi-scale
systems can be constructed by superimposing several distribution functions of this kind, as we will do in Section 4. The
functional (power-law) form off is described in detail in[1], here we limit ourselves to this simpler description for
clarity.
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Figure 1: (Left) Graphical representation of the descriptors of an anisotropic single-scale system. (Right)
The CGC initial condition lies of ad = c−1 line oncd-plane.

marginally non-perturbative; deviation from this point byany positive power ofα (c< 1 ord > 0)
renders parts of the system perturbative. And indeed, the interactions and the expansion both work
toward driving the system away from this point.

Once the system is away from the non-perturbative point, several scale separations emerge. In
particular, the kinetic mean free path of particles withp∼ Qs becomes much larger than their ther-
mal wavelength,l f ree∼ α−2−d+2cQ−1

s ≫ Q−1
s , so that their evolution and mutual interactions can

be described in an effective kinetic theory [7]. The screening scale(m2 ∼
∫

d3p f(p)/p∼ αd−cQ2
s)

becomes parametrically longer than the wavelength of the typical hard particles. The interaction
between the modes at scalesm andQs is still non-perturbative, but the between modes at scalem
perturbative. The non-perturbative interaction betweenm andQs scales can be resummed by de-
scribing the modes in the screening scale by collisionless Vlasov equations, or equivalently in the
hard-loop (HL) effective theory. The non-equilibrium system also has an infrared scale, analogous
to the magnetic scale (αT) of the thermal ensemble, characterized by non-perturbative interactions
between modes at the infrared scale. Fortunately, this scale does not dominate anything.2

3.1 Longitudinal expansion

The effect of the spatial expansion translates into redshift of thepz components of the momenta
dpz/dt ∼ −pz/t and reduces particle numbern′(t) ∼ −n(t)/t. If the system is highly anisotropic

d> 0, the energyE ∼
√

p2
z + p2

⊥ of the hard particles is dominated byp⊥, and the red-shifting does
not appreciably affect the particle energies. Then also theenergy density scales ase′(t)∼−e(t)/t.
Therefore, at later times energy conservation forces the system to be constrained on other lines of
fixed (smaller) energy density on thecd-plane,d = c− 1+ a for Qsτ ∼ α−a, as displayed in the
Fig. 2. Where exactly on these lines the system takes its place depends on the details of dynamics.

3.2 Momentum broadening and anisotropic screening

An O(1) part of momentum transfer experienced by a hard particle propagating through an
equilibrium plasma comes from momentum exchanges of the order of the screening scale. In an
anisotropic plasma there are magnetic modes at the screening scale which become large, and hence
the soft momentum transfers in an anisotropic system becomeenhanced and even more important.

In an isotropic medium withf (~p) ∼ fiso(|p|), long wavelength chromo-electric fields are sta-
bilized by the physics of screening: the introduction of a background electricE field deflects

2In [8] it has been argued that the infrared scale might dominate particle number and contain a Bose-Einstein
condensate. For further discussion in this topic see [9].
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Figure 2: (Left) Solutions to the evolution incd-plane. In absence of interactions the system follows
“Free streaming” line. Including perturbative scatteringbut neglecting instabilities leads to the attractor
labeled “elastic” from [4]. Inclusion of the effect of instabilities leads to more isotropic attractor labeled
“Instabilities”. (Right) Cartoon of particle propagatingthrough plasma unstable magnetic fields. Each patch
of same-signB-field gives rise to a momentum transfer∆pkick ∼ gBlcoh, leading to ˆq∼ (∆pkick)

2/lcoh.

trajectories of hard particles in a way that induces a current J; the electric field is reduced by
the current, eventually canceling it. Now, the energy originally deposited in the electric field is
stored in currents, which start to create an electric field that in its turn will quench the currents.
Thus, the energy oscillates between a charge separating deformation of the distribution of hard
particles and the electric field. The frequency of the plasmaoscillation is related to the screen-
ing scaleω2

pl| fiso ∼ m2 ≡ α
∫

d3p f/p, and the dispersion relation of modes withp ∼ m becomes

ω(p) ∼
√

p2+ω2
pl. In an isotropic medium, static magnetic fields are not screened: the deforma-

tion to the hard particle distribution due to a staticB-field is simply an overall rotation around the
axis set by a magnetic field. The deformed distribution is identical to the original one, and therefore
no net currents are created, and correspondingly the “magnetic plasma frequency”ω2

mag| fiso ∼ 0;
magnetic fields are neither stabilized nor destabilized (corresponding toω2

mag< 0) by screening.

In an anisotropic plasma with an angle dependent particle distribution faniso(p̂) the rotation
does not leave the hard distribution unchanged and leads to non-zero currents. Therefore theB-
fields may be stabilized or destabilized. For an anisotropicdistribution, we may nevertheless ask
what is the effect averaged over the directionB̂= ~B/|B| (and polarizations) of the magnetic field,
〈ω2

mag(B̂)| faniso(p̂)〉B̂. This is equivalent to angle averaging over the particles’ momentum distri-
butions, and hence corresponds to some isotropic system with fave= 〈 f (p̂)〉p̂, which is neither
stabilized nor destabilizedω2

mag(B̂)| fave = 0. Therefore, even in anisotropic systems, the medium’s
impact on magnetic fields, averaged over all directions, is neutral.3 However, if there are any di-
rections that are stabilized (ω2

mag> 0), there must be other directions that have the opposite effect
and are destabilized (ω2

mag< 0). These are the plasma unstable modes. They arealwayspresent in
anisotropic systems, and they grow exponentiallyB(t)∼ B(0)eγt with a growth rateγ ∼ m.

Which modes become unstable depends on the details of the anisotropic distribution. The set
of unstable modes can be found,e.g., by finding the range of momenta for which the retarded HL
propagator has poles in the upper half complex-plane. This question has been addressed in [10, 11],
and for the distribution of Eq. (2.1), the unstable modes have kinst

⊥ . mandkinst
z ∼ α−dm.

3In terms of HL effective theory, this is to say that the angle average of the HL gluon polarization tensor is propor-
tional to the isotropic, thermal polarization tensor.
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Nothing grows exponentially forever, and the growth of the magnetic fields stops when some
new physics kicks in. The previous discussion relied on linearizing in the size of the magnetic field;
once dynamics become non-linear, the non-perturbative interactions stop the exponential growth
and the instabilities saturate. The non-linear physics enters through the covariant derivativeDµ =

∂µ + igAµ , and therefore the non-linear physics kicks in when the interaction term competes with
the derivative inDµ . In a non-abelian theory, the magnetic modes can interact among themselves,
so the relevant momentum scale is that of the instabilities∂µ ∼ kinst

⊥ , corresponding toA∼ kinst
⊥ /g, or

B2 ∼ (∆×A)2 ∼ (kinstA)2 ∼ kinst
⊥

2
k2

inst/α , or equivalentlyf ∼ 1/α .4 That the non-linear interaction
indeed saturates the instability has been observed in numerical HL simulations [12].

How important for dynamics the unstable magnetic fields are depends on how large they grow
and how strongly correlated they are. When the hard particles move through the large magnetic
fields, they experience a time varying Lorentz force (see Fig. 2). The magnetic field remains
coherently in the same direction for the characteristic coherence length of the magnetic field,
lcoh ∼ kinst

⊥
−1

for a particle moving in a⊥ direction. The momentum accumulated in one co-
herence length is∆pkick ∼ gBlcoh, and propagating through many such uncorrelated patches of
coherent magnetic field leads to diffusive momentum transfer described by a momentum diffu-
sion coefficient ˆqinst ∼ (∆pkick)

2/lcoh∼ αB2/kinst
⊥ ∼ k2

instk
inst
⊥ ∼ α−2dm3 ∼ α− 1

2d+ 3
2(1−c)Q3

s. As ex-
pected, this plasma instability induced ˆq is larger than the one due to perturbative elastic scattering
q̂el ∼ α−2c+dQ3

s during the equilibration process, and therefore we do not need to discuss elastic
scattering in the following.

3.3 Competition between momentum broadening and longitudinal expansion

We are now ready to solve the trajectory of the system in thecd-plane during the first and
second stages. The longitudinal expansion makes the distribution more anisotropic with a rate
dpz/dτ =−pz/τ corresponding to dd/da|expansion=+1, while the momentum broadening isotropizes
the distribution with a rate dpz/dτ ∼ q̂inst/pz corresponding to dd/da|inst ∼ −α− 5

2d+ 3
2(1−c)−a ∼

+α−4d+ 1
2a, with the energy conservation condition 1− c= a−d. These two opposite effects can

compete only if also dd/da|inst ∼O(α0), which happens whendatt.(a) = a
8, andcatt. = 1− 7

8a. This
is solution plotted on thecd-plane in Fig. 2.5

The solution is attractive in the sense that if the system is in a state below (above) the attractor
(d < a

8), the system becomes more anisotropic (isotropic) and reaches the attractor along a line of
constant energy density in a time scale comparable to the ageof the system.

In Fig. 2 we also plot the corresponding attractor neglecting the effect of plasma instabilities,
so that the momentum broadening is due ordinary elastic scattering. As the interaction is weaker
the distribution is, at a given time, less isotropic than with instabilities. The attractor has a corner
at f ∼ 1 where the system turns from over- to under-occupied and ˆqel ∝ f (1+ f ) changes behavior.
For a plasma instability driven system, there is no such kinkin the attractor; the plasma instabilities
depend on the hard particle distribution only through the scale m, which is linear in f , and the
attractor is valid also atQsτ ≫ α− 8

7 . If no new physics would kick in, the system would not
thermalize and would only get more and more dilute as a function of time.

4In [1], a more precise gauge invariant criterion is presented in terms of Wilson loops. For here, this simpler criterion
is however good enough.

5We also find another, weakly anisotropic attractor. For details, and why we do not think it is realized, see [1].
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Figure 3: (Left) Cartoon of the infrared cascade of a particle with momentumk. Once the particle has had
time to split in two daughters with comparable momenta, the daughters quickly cascade to the infrared until
they reach the soft thermal bath. (Right) Cartoon of the momentum scales in late stages of the evolution.
The important scales are (from hard to soft): highly anisotropic distribution of hard particles at scaleQs

(pink), scaleksplit below which particles have had time to cascade to infrared, soft nearly thermal bath with
anisotropyε (black and pink), and the anisotropic screening scale of theT-bathε1/2mwith strong magnetic
fields (Dark red). The system becomes effectively thermalized onceksplit reachesQs.

4. Creation of a soft nearly thermal bath, “Bottom-up”, α− 12
5 ≪ Qsτ ≪ α− 5

2

During the first stage, inelastic scattering in an over-occupied system works towards joining
the hard particles and cascade energy to the ultraviolet. Once the system becomes under-occupied,
this behavior changes qualitatively and the inelastic scattering starts tosplit hard particles and
cascade their energy to the infrared. This leads to the creation of a two-scale system; in addition to
the original population of hard particles, the debris of splitting form a new,soft6, population. The
constituents of the soft bath have less inertia, and hence they may isotropize and thermalize faster
(by the timeQsτ ∼ α− 56

25 , see [1] for details).
How much energy is deposited in the soft bath and what its temperature is depend on how

effectively the hard particles cascade to the infrared. Therate at which a hard particle undergoing
transverse momentum diffusion emits daughters of momentumpdaught. is given (in the LPM regime)
by t−1

split ∼α
√

q̂/pdaught.. That is, by the timeτ all particles with momentumk< ksplit ∼ α2q̂τ2 have
had enough time to emit a daughter whose energy is comparableto the emitter’s, corresponding
to splitting the original particle democratically into twodaughters with half the original energy
(see Fig. 3). The daughters have a higher splitting rate thanthe mother particle, and they undergo
successive democratic splittings in a time that is shorter than the age of the system, cascading their
energy to the soft bath. As by the timeτ each hard particle have had time to emitO(1) particle with
energyksplit, the energy density and the temperature of the soft bath ise∼ T4

soft ∼ ksplit
∫

d3p f(p).7

Even if the soft sector does not dominate the energy density (
∫

d3p f(p)p), it can dominate
other characteristics of the medium, such as screening (

∫

d3p f(p)/p) andq̂. Whenq̂ is dominated
by interactions with the soft bath, the hard particles effectively decouple from each other and see
only the soft medium. In this case the physical picture is that of a system consisting of a nearly ther-
mal bath through which a distribution of few but highly energetic “jets” with energyQs propagate.
The interaction with the medium quenches the jets via radiative energy loss. When the jets have

6Soft compared toQs but still hard compared to the screening scale
7ForQsτ ≪ α− 12

5 , q̂ is a strongly angle dependent function giving rise to subtleties not relevant for discussion here.
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had time to lose all their energy to the medium, that isksplit ∼Qs or equivalentlyτeq∼ α−1
√

Qs/q̂,
the system has effectively thermalized.

How fast the system then thermalizes is then controlled by how strongly the soft nearly thermal
bath broadens the momentum of the jets. In [4], it was assumedthat the primary mechanism is
through perturbative elastic scattering, so that ˆqel ∼ α2T3

soft. At the time scale the hard jets deposit
their energy to the thermal bath, the energy density of the thermal bath is comparable to that of the
hard jets,T4

soft ∼ α−1Q4
s/(Qsτ), leading to an estimate for the thermalization timeQsτ0 ∼ α−13/5.

However, also in this case the plasmainstabilities dominate the momentum transfer. The soft
nearly thermal bath is also anisotropic, partly due to the “stretching” by expansion and partly
because the cascade of the hard particles heating the bath isanisotropic. Both of these effects lead
to a parametrically weak anisotropy of the soft bath, of order ε ≡ 〈|p⊥|〉/〈|pz|〉 ∼ T2/(q̂τ). In
[1], we found that weakly anisotropic systems such as this generates unstable modes in a range
kinst

z ∼ kinst
⊥ ∼ ε1/2ms, wherem2

s ∼ αT2 is the screening scale of the soft distribution.8 These
unstable modes then subsequently cause momentum broadening q̂ε ∼ k3

inst ∼ ε3/2α3/2T3, which is
larger than the elastic contribution arising from the soft sector as long asε ≫ α1/3, and dominates
over q̂ arising from the hard distribution forQsτ ≫ α−12/5. See Fig 3 for cartoon of the scales.

Taking everything together and solving self-consistentlygives

ksplit ∼ α2q̂ε τ2, T4 ∼ ksplitQ3
s(αQsτ)−1, q̂ε ∼ ε3/2α3/2T3, ε ∼ T2/(q̂ε τ)

ksplit ∼ α5Qs(Qsτ)2, T ∼ αQs(Qsτ)1/4, q̂ε ∼ α3Q3
s, ε ∼ α−1(Qsτ)−1/2,

(4.1)

so that the hard particles have had time to cascade to the thermal bath,i.e. ksplit ∼ Qs, by the
time Qsτ ∼ α−5/2. At this point the system (especially itsTµν ) is approximately isotropic and is
amendable to a hydrodynamical description.
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