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1. Introduction

The exclusive double-charmonium production cross sectionσ(e+e− → J/ψ +ηc), which has
been measured by the Belle [1, 2] andBABAR[3] collaborations, has provided serious challenges
to the nonrelativistic QCD (NRQCD) factorization formalism [4, 5, 6, 7, 8]. The theoretical value
for the cross section at leading order (LO) in the strong couplingαs and the heavy-quark velocity
v [9, 10] is almost an order of magnitude smaller than the measured rate. The discrepancy between
theory and experiment seems to have been resolved by the inclusion of higher-order corrections,
which include QCD corrections of next-to-leading order (NLO) inαs [11, 12] and corrections of
higher order inv (relativistic corrections) [13, 14, 15]. Here,v is the velocity of the heavy quark
(Q) or heavy antiquark (̄Q) in the quarkonium rest frame.

As the authors of Ref. [16] have pointed out, the large NLO QCD corrections involve double
logarithms ofQ2/m2

c, whereQ2 is the square of thee+e−-center-of-momentum energy andmc is the
charm-quark mass. These logarithms are sufficiently large that it may be necessary to resum them
to all orders inαs in order to obtain a reliable theoretical prediction. Typically, the resummation
of large logarithms is carried out through a factorization of the contributionsthat arise from small
momentum scales from the contributions that arise from large momentum scales.A first step in
deriving such a factorization is to identify the regions of loop-momentum integrals that produce the
large logarithms at the leading nonzero power ofQ2 [17].

In this paper, we identify the leading loop-momentum regions that give rise to the double log-
arithms in the NLO QCD corrections to the processe+e− → J/ψ +ηc. According to the NRQCD
factorization formalism [4], the amplitude for this process at LO inv, can be written as a product
of a short-distance coefficient with the NRQCD long-distance matrix elements (LDMEs) for the
evolution ofQQ̄ pairs into theJ/ψ and theηc. The same short-distance coefficient appears in the
amplitude for the production of twoQQ̄ pairs that have the same quantum numbers as the corre-
sponding quarkonia. The short-distance coefficient can be obtained perturbatively by comparing
the full-QCD amplitudeiA [e+e− → QQ̄1(

3S1)+QQ̄1(
1S0)] with the NRQCD amplitude, which

consists of the short-distance coefficient times the NRQCD LDMEs for theQQ̄ states. (Here the
subscripts 1 indicate that theQQ̄ pairs are in color-singlet states.) The double logarithms ofQ2/m2

c

arise solely from the full-QCD amplitude because the NRQCD LDMEs for theQQ̄ states are in-
sensitive to momentum scales of ordermc or larger. In Sec. 2, we carry out the calculation of the
double logarithms ofQ2/m2

c at NLO inαs for the processe+e− → J/ψ+ηc by examining the NLO
QCD corrections to the full-QCD process. We find that the double logarithms arise from Sudakov
or endpoint regions of loop momenta, and we identify the contribution that arises from each region
for each NLO Feynman diagram. Our results for the double logarithms agreewith those that were
obtained in the complete NLO calculations [11, 12]. We find that the Sudakov double logarithms
cancel in the sum over diagrams and that power-divergent contributions from the endpoint region
vanish. In Sec. 3, we give a general analysis of the Sudakov double logarithms that elucidates the
reason for their cancellation in the sum over diagrams. In Sec. 4, we givea general analysis of the
endpoint region that establishes the absence of power-divergent contributions. We summarize our
results in Sec. 5.
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2. Calculation of double logarithms

In this section, we evaluate the double logarithms that appear in the NLO QCD corrections to
the amplitudee+e− → J/ψ +ηc, and we identify the momentum regions that are associated with
the logarithms. The processe+e− → QQ̄1(

3S1)+QQ̄1(
1S0) is composed ofe+e− → γ∗, followed

by γ∗ → QQ̄1(
3S1)+QQ̄1(

1S0). Because the processe+e− → γ∗ does not receive QCD corrections
in relative orderα0αs, we need to consider only the processγ∗ → QQ̄1(

3S1)+QQ̄1(
1S0) in the

evaluation of the NLO QCD corrections.

2.1 Kinematics, conventions, and nomenclature

Now we describe the kinematics, conventions, and nomenclature that we usein calculating
the double logarithms and throughout this paper. We work in the Feynman gauge. We use the
light-cone momentum coordinatesk = [k+,k−,kkk⊥] = [(k0+ k3)/

√
2,(k0− k3)/

√
2,kkk⊥] and work

in thee+e−-center-of-momentum frame. Because our calculation is at LO inv, we set the relative
momentum of theQ andQ̄ in each charmonium equal to zero. Then, the momenta of theQ and
Q̄ in theJ/ψ are bothp= [(

√

P2+m2
c +P)/

√
2,(

√

P2+m2
c −P)/

√
2,000⊥], and the momenta of

the Q andQ̄ in the ηc are both ¯p = [(
√

P2+m2
c −P)/

√
2,(

√

P2+m2
c +P)/

√
2,000⊥], whereP is

the magnitude of the 3-momentum of any of theQs orQ̄s. The momentum of the virtual photon is
Q= 2(p+ p̄), which implies thatQ2 = 16(P2+m2

c). If a momentumk has light-cone components
whose orders of magnitude arePλ [1,(η+)2,η+], then we say thatk is soft if λ ≪ 1, and we say
that k is collinear to plus ifη+ ≪ 1. If k has light-cone components whose orders of magnitude
arePλ [(η−)2,1,η−], then we say thatk is soft if λ ≪ 1, and we say thatk is collinear to minus if
η− ≪ 1. Hence,p is collinear to plus and ¯p is collinear to minus in the limitm2

c/P2 → 0.

2.2 Evaluation of the diagrams

Now we calculate the double logarithms that arise from the Feynman diagrams that contribute
to the NLO QCD corrections to the amplitude. The amplitudes for each diagram contain spin and
color projectors that put theQQ̄ pairs into states of definite spin and color [18]. When the relative
momentum of theQ andQ̄ in each charmonium is zero, the spin-singlet and spin-triplet projectors
are given by

Π1(p̄, p̄) =−
1

2
√

2m
γ5(p̄/+mc), (2.1)

Π3(p, p,λ ) =−
1

2
√

2m
ε/∗(λ )(p/+mc), (2.2)

whereε∗(λ ) is the polarization vector for theQQ̄ pair in the spin-triplet state.
The NLO diagrams that contain the double logarithms inQ2/m2

c are shown in Fig. 1. Because
the processe+e− → J/ψ +ηc does not satisfy quark-helicity conservation, its amplitude must con-
tain a numerator factormc, which produces a helicity flip. Hence, the amplitude is suppressed by a
factor ofmc/Q relative to a helicity-conserving amplitude. The factormc can come from the numer-
ators of the quark propagators or from the numerators of the spin projectors. We must also retain a
nonzero quark mass in denominators because logarithmic collinear and endpoint divergences that
appear in the calculation are sensitive to that mass.
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Figure 1: One-loop diagrams that produce double logarithms ofQ2/m2
c. The upperQQ̄ pair corresponds to

theJ/ψ, and the lowerQQ̄ pair corresponds to theηc.

A straightforward calculation of the diagram in Fig. 1(a) gives

iALO ×
−iαsπQ2

2

(

CF −
1
2

CA

)

×
{

∫

ddk
(2π)d

1
(k2+ iε)[(k+ p)2−m2

c + iε ][(k− p̄)2−m2
c + iε ]

+
∫

ddk
(2π)d

1
[(k+ p+ p̄)2+ iε ][(k+2p+ p̄)2−m2

c + iε ][(k+ p)2−m2
c + iε ]

+
∫

ddk
(2π)d

1
(k2+ iε)[(k+ p)2−m2

c + iε ][(k+ p+ p̄)2+ iε ]
+ · · ·

}

, (2.3)

where we retain only the terms that contain the double logarithms inQ2/m2
c. Here,CF = (N2

c −
1)/(2Nc), CA = Nc, d = 4− 2ε, and iALO is the LO (order-αs) contribution to the amplitude
iA [γ∗ → QQ̄1(

3S1)+QQ̄1(
1S0)]:

iALO =
−i256παsCF

mcQ4 εµναβ ε∗
ν(λ )pα p̄β , (2.4)

whereµ is the polarization of the virtual photon. We use the nonrelativistic normalizationfor the
spinors.εµναβ is the totally antisymmetric tensor in 4 dimensions, for which we use the convention
ε0123= 1. We evaluate the first integral in Eq. (2.3) using dimensional regularization to control the
soft divergence. We find that

S ≡
∫

ddk
(2π)d

1
(k2+ iε)[(k+ p)2−m2

c + iε ][(k− p̄)2−m2
c + iε ]

=
i

4π2Q2

{[

1
εIR

− log(m2
c/µ2)

]

log(m2
c/Q2)+

1
2

log2(m2
c/Q2)+ · · ·

}

, (2.5)

where we retain only the terms that are singular inε and the double logarithms.
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We have carried out a detailed analysis of the first integral in Eq. (2.3) that makes use contour
integration for the integration overk0. That analysis shows that double logarithm in this integral
comes from the region in which the gluon with momentumk is simultaneously soft and collinear.
That is, it is a Sudakov double logarithm. The second integral in Eq. (2.3) isidentical to the first
integral if we change the loop momentum tok+ p+ p̄. Hence, the second integral gives a Sudakov
double logarithm that comes from the region in which the gluon with the momentumk+ p+ p̄ is
simultaneously soft and collinear. The last integral in Eq. (2.3) yields

E ≡
∫

d4k
(2π)4

1
(k2+ iε)[(k+ p)2−m2

c + iε ][(k+ p+ p̄)2+ iε ]
=

i
8π2Q2

[

log2(m2
c/Q2)+ · · ·

]

,

(2.6)
where again we show only the double-logarithmic contributions. (In this integral, there is no sin-
gularity in ε.) A detailed analysis, which makes use of contour integration for thek0 integration,
shows that the double logarithm in this integral comes from the momentum region inwhich the
gluons carry almost all of the collinear-to-plus and collinear-to-minus momentafrom the spectator-
quark line to the active-quark line. We call a contribution from this momentum region an endpoint
contribution. An important observation is thatE can be made to look similar to the integral that
gives the Sudakov double logarithm by changing the loop momentum to the spectator-quark mo-
mentumℓ=−k− p. Then, we have

E =
∫

d4ℓ

(2π)4

1
(ℓ2−m2

c + iε)[(ℓ+ p)2+ iε ][(ℓ− p̄)2+ iε ]
. (2.7)

It follows that the endpoint double logarithm arises from the region in whichthe momentum of
the spectator quark,ℓ, is soft and collinear. From Eq. (2.7), we see that the soft and collinear
divergences are regulated bymc. An analysis of Eq. (2.7) also shows that single logarithms of
Q2/m2

c can arise from the region in which the momentum of the spectator quark is soft.
Carrying out similar analyses of the remaining diagrams that contribute to the amplitude

γ∗ → QQ̄1(
3S1)+QQ̄1(

1S0) at orderα2
s , we find that the double logarithms in each diagram are

accounted for by Sudakov double logarithms and endpoint double logarithms. The Sudakov and
endpoint double logarithms that arise from each diagram are summarized in Table. 1. Our result for
the sum of double logarithms in all of the NLO diagrams agrees with the results in Refs. [12, 16].
We also find that our results in the Feynman gauge for the double logarithm in each diagram agree
with the results that were obtained in carrying out the calculation of Ref. [16].1

Our detailed calculations are consistent with two general properties of the Sudakov and end-
point singular regions: (1) the Sudakov double logarithms cancel in the sum over diagrams; (2) the
endpoint region produces only logarithmic singularities, not power singularities. In the following
sections, we show how these general properties arise from soft-collinear approximations that are
valid in the Sudakov and endpoint regions.

3. General analysis of the Sudakov double logarithms

As we have mentioned, Sudakov double logarithms arise from a region in which the momen-
tum of a gluon is simultaneously soft and collinear. We would like to apply a collinear approxima-

1We thank Yu Jia and Xiu-Ting Yang for providing us with the logarithmic contributions of the individual NLO
Feynman diagrams.
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Diagram Endpoint double logarithm Sudakov double logarithm

(a) (CF − 1
2CA)E 2(CF − 1

2CA)S

(b) CFE 0
(c) 2CFE 0
(d) 1

2 CFE 0
(e) (CF − 1

2CA)E (CF − 1
2CA)S

(f) 0 (CF − 1
2CA)S

(g) 0 −(CF − 1
2CA)S

(h) 0 −(CF − 1
2CA)S

(i) 0 −(CF − 1
2CA)S

(j) 0 −(CF − 1
2CA)S

Table 1: Endpoint and Sudakov double logarithms in each diagram, in units of iALO × (−iαsπQ2)/2.

tion to such gluons. Consider, for example, Figs. 1(e) and(g), in which a gluon with momentum
k that is collinear to minus is emitted from a quark line with momentum ¯p. Then, the quark-gluon
vertex and the two propagator numerators surrounding it can be written as

(p̄/+mc)γµ(p̄/+k/+mc) = 2(p̄µ +kµ)(p̄/+mc)−k/γµmc, (3.1)

whereµ is the polarization index of the gluon, we have usedk/p̄/ ∝ p̄/p̄/ and p̄/p̄/ = m2
c, and we have

dropped terms of orderm2
c. In the collinear-to-minus approximation, one retains only the first of the

two terms on the right side of Eq. (3.1). In the case of nonzero quark masses, this approximation is
not valid in general. However, ifk is soft in comparison to ¯p, as well as collinear, then we can drop
the second term on the right side of Eq. (3.1), and the standard collinear approximation holds. [We
can also dropk in the first term on the right side of Eq. (3.1).] Since the current in Eq. (3.1) now
lies in the minus light-cone direction, up to terms of orderm2

c, we can make a collinear-to-minus
approximation in the gluon propagator [19, 20, 21], by making the replacement in the polarization
tensor

gµν →
kµ pν

k · p− iε
, (3.2)

where the indexν corresponds to the attachment of the gluon to the quark line that is collinear to
minus and the sign ofiε is fixed by the sign in the original Feynman diagram. This approximation
is valid unless theµ attachment of the gluon is to a line that is also collinear to minus. Hence,
the approximation always holds for the diagrams that produce Sudakov logarithms because the
invariantQ2 in the logarithm can appear only if the soft-collinear gluon connects a line carrying
momentum ¯p with a line carrying momentump. The replacement (3.2) can also be regarded as a
soft approximation [22, 23] to theµ attachment of the gluon. However, the collinear approximation
can be more useful in applications other than the present one because its form is independent of the
direction of the momentump, while the form of the soft approximation is not.

For the diagram of Fig. 1(e) we can apply the soft-collinear approximation (3.2), where the
indexµ corresponds to the connection of the collinear-to-minus gluon to the active-quark line that

6
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carries momentump:

ū(p)γν 1
p/−k/−mc+ iε

→ ū(p)
k/pν

k · p− iε
1

p/−k/−mc+ iε
=−ū(p)

pν

k · p− iε
, (3.3)

where, in the last equality, we have applied the graphical Ward identity (Feynman identity). Sim-
ilarly, for the diagram of Fig. 1(g) we can apply the soft-collinear approximation (3.2), where the
index µ corresponds to the connection of the collinear-to-minus gluon to the spectator-quark line
that carries momentump:

1
−p/+k/−mc+ iε

γνv(p) →
1

−p/+k/−mc+ iε
k/pν

k · p− iε
v(p) = +

pν

k · p− iε
v(p). (3.4)

Because the outgoingQQ̄ pairs are in color-singlet states, these two contributions have the same
color factor and cancel. This type of cancellation extends to all diagrams involving a gluon with
soft-collinear-to-minus momentum. Similar cancellations occur for diagrams involving a gluon
with soft-collinear-to-plus momentum. Therefore, in the sum of all diagrams, Sudakov double
logarithms cancel.

4. General analysis of the endpoint region

As we have mentioned, the endpoint double logarithms ofQ2/m2
c arise from the region of

loop integration in which the momentumℓ of the internal spectator-quark line is simultaneously
soft and collinear. Hence, we need to consider only diagrams that can produce such a momentum
configuration. These diagrams are shown in Figs. 1(a)–(f). (A diagram and its charge conjugate
give equal contributions to the amplitude. The charge-conjugate diagrams are not shown in Fig. 1.)
The endpoint double logarithms arise from contributions in which there is a numerator factormc,
which produces the helicity flip, and in which integrals diverge logarithmically inthe limit mc → 0.
In general, integrals can also diverge as inverse powers ofmc in the limit mc → 0, but, as we shall
see, such contributions vanish when the numerator trace is taken.

In diagrams(a), (e), and(f), the momenta of the propagators on the active-quark lines contain
both p and p̄. Sincep · p̄∼ P2 ∼ Q2, we can ignoreℓ in the denominators of those propagators. In
the limit mc → 0, the two gluon-propagator denominators and spectator-quark-propagator denomi-
nator produce factors 1/(ℓ2+2p·ℓ), 1/(ℓ2−2p̄·ℓ), and 1/ℓ2, respectively, where we have dropped
them2

c terms in the propagator denominators. Hence, in order to obtain a logarithmicallydivergent
soft power count (λ−4) and logarithmically divergent collinear power counts [(η±)−4], we must
drop all numerator factors ofℓ. This implies that the helicity flip comes from the factormc in the
numerator of the spectator-quark propagator.

In diagram (b), the momentum of the outermost active-quark propagator contains the momen-
tum p, but not the momentum ¯p. Hence, in the limitmc → 0, the denominator of this propagator
produces a factor 1/(ℓ2 + 4p · ℓ). Then, all of the propagator denominators taken together pro-
duce a linearly divergent soft power count and a linearly divergentcollinear-to-plus power count.
However, it is easy to see that numerator factors reduce both of these power counts to logarithmic
ones. First, we rewrite the numerator factors that are associated with the outermost gluon and the
spin projector for theJ/ψ QQ̄ pair asγµ(p/−mc)ε/∗γµ = 2mcε/∗, where we have used the fact that

7
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p·ε∗ = 0. Now, because the numerator power ofmc is in this factor, the numerator of the spectator-
quark propagator must contribute a factorℓ/. Furthermore, the numerator vanishes, up to terms of
orderm2

c, if ℓ is proportional top because there are then two factors ofp/ that are separated byγ
matrices with which they anticommute. Hence, in the trace over theγ matrices,ℓ must appear in
the combinationℓ · p. This numerator factor reduces both the soft and collinear power countsto
logarithmic ones.

In the case of diagram (c), the denominator of the outermost active-quark propagator con-
tributes a factor 1/(ℓ2−4p̄·ℓ). Hence, the soft and collinear-to-minus power counts from the prop-
agator denominators are both linearly divergent. Now, we rewrite the numerator factors that are as-
sociated with the outermost gluon and the spin projector for theηc QQ̄ pair asγµ(−p̄/−mc)γ5γµ =

(−2p̄/+4mc)γ5. If the numerator factormc comes from the spectator-quark propagator, then there
must be a factorℓ/ from the outermost active-quark propagator, or else there are two adjacent fac-
tors of p̄/ and the numerator vanishes, up to terms of orderm2

c. If the numerator factormc does not
come from the spectator-quark propagator, then that propagator must yield a numerator factorℓ/.
In both cases, the numerator factor vanishes, up to terms of orderm2

c, if ℓ is proportional to ¯p be-
cause, in that case, there are two factors of ¯p/ that are either adjacent or are separated byγ matrices
with which they anticommute. Therefore, we conclude that the trace contains afactorℓ · p̄, which
reduces both the soft and collinear-to-minus power counts to logarithmic ones.

In the case of diagram (d), the denominators of the active-quark propagators produce factors
1/(ℓ2+4p · ℓ) and 1/(ℓ2−4p̄ · ℓ). Hence, the propagator denominators, taken together, produce a
quadratically divergent soft power count and linearly divergent collinear-to-plus and collinear-to-
minus power counts. One can apply the arguments that were used for the numerators of diagrams
(b) and (c) separately to each of the gluons in diagram (d), with the conclusion that the numerator
contains two factors ofℓ/ and that the numerator vanishes, up to terms of orderm2

c, if ℓ is proportional
to p or to p̄. Hence, the trace contains a factorℓ · pℓ · p̄ or a factorℓ2. In either case, the numerator
factor reduces the soft and collinear power counts to logarithmic ones.

In the case of one-loop corrections to helicity-conserving charmonium-production processes,
in which there is no numerator factormc, the previous arguments show that the contribution from
the region in which the spectator quark carries a soft-collinear momentum vanishes, implying that
there are no endpoint double logarithms. This general conclusion is confirmed in explicit calcula-
tions [16, 24, 25].

5. Summary

In this work we have investigated the origin of the double logarithms ofQ2/m2
c that appear in

the NLO QCD corrections to the processe+e− → J/ψ +ηc. We find that the double logarithms
in each diagram are accounted for by Sudakov double logarithms and endpoint double logarithms.
The Sudakov double logarithms cancel in the sum of all diagrams. We have given a general ar-
gument for this cancellation that is based on the soft-collinear approximation and graphical Ward
identities. We have reinterpreted the region of a loop integration that gives rise to an endpoint
double logarithm as a leading region in which the momentum of the spectator-quark line is both
soft and collinear. Under this reinterpretation, we would also expect single logarithms ofQ2/m2

c

to arise from a leading region in which the momentum of the spectator-quark lineis soft. This

8
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reinterpretation may be useful in establishing an all-orders factorization theorem for helicity-flip
quarkonium production. Such a factorization theorem might allow one to resum logarithms of
Q2/m2

c to all orders inαs for helicity-flip processes. We have also given a power-counting analysis
of the one-loop endpoint contributions, which shows that they can arise only in the presence of a
helicity flip and that the loop integration can produce logarithms, but not inverse powers, of the
heavy-quark massmc.
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