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We investigate the origin of the double logarithmsQsf/mg that appear in the calculation of the
cross section foete~ — J/( + n at next-to-leading order in the strong coupliag Here,Q?

is the square of the center-of-momentum energy,raqis the charm-quark mass. We find that,
diagram-by-diagram, the double logarithms are accourttelyf Sudakov double logarithms and
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terms of a leading region of loop integration in which a sp&mtfermion line becomes soft and
collinear. This reinterpretation may simplify the procegsstablishing an all-orders factorization
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1. Introduction

The exclusive double-charmonium production cross sedi@ie  — J/{ + nc), which has
been measured by the Bell¢ [}, 2] aBABAR[B] collaborations, has provided serious challenges
to the nonrelativistic QCD (NRQCD) factorization formalisfh [B[[5[]6[] 7, 8ieTheoretical value
for the cross section at leading order (LO) in the strong coumingnd the heavy-quark velocity
v B, [L3] is almost an order of magnitude smaller than the measured rate. Thepdiscy between
theory and experiment seems to have been resolved by the inclusion ef-bigler corrections,
which include QCD corrections of next-to-leading order (NLOYn[[L3, [L2] and corrections of
higher order inv (relativistic corrections)[[19, 14, [L5]. Herejs the velocity of the heavy quark
(Q) or heavy antiquark@ in the quarkonium rest frame.

As the authors of Ref[]16] have pointed out, the large NLO QCD cornestiovolve double
logarithms 0fQ?/mZ, whereQ? is the square of thete~-center-of-momentum energy angis the
charm-quark mass. These logarithms are sufficiently large that it may bes@y to resum them
to all orders inas in order to obtain a reliable theoretical prediction. Typically, the resummation
of large logarithms is carried out through a factorization of the contributioaisarise from small
momentum scales from the contributions that arise from large momentum séafist step in
deriving such a factorization is to identify the regions of loop-momentum iateginat produce the
large logarithms at the leading nonzero poweQsf[L7].

In this paper, we identify the leading loop-momentum regions that give rise tdahble log-
arithms in the NLO QCD corrections to the process™ — J/ + n¢. According to the NRQCD
factorization formalism[[4], the amplitude for this process at LQ,iean be written as a product
of a short-distance coefficient with the NRQCD long-distance matrix elemebBtsIEs) for the
evolution ofQQ pairs into thel /Y and then.. The same short-distance coefficient appears in the
amplitude for the production of th@ pairs that have the same quantum numbers as the corre-
sponding quarkonia. The short-distance coefficient can be obtagréatipatively by comparing
the full-QCD amplitudei 7 [e"e~ — QQ1(3S1) + QQ1(*S)] with the NRQCD amplitude, which
consists of the short-distance coefficient times the NRQCD LDMEs fleEestates. (Here the
subscripts 1 indicate that tl@ pairs are in color-singlet states.) The double logarithn@%ing
arise solely from the full-QCD amplitude because the NRQCD LDMEs foQ@estates are in-
sensitive to momentum scales of oraeyor larger. In Sed]2, we carry out the calculation of the
double logarithms of?/mé at NLO in as for the process*e™ — J/ g+ ¢ by examining the NLO
QCD corrections to the full-QCD process. We find that the double logarithise from Sudakov
or endpoint regions of loop momenta, and we identify the contribution thatsafism each region
for each NLO Feynman diagram. Our results for the double logarithms agfeéhose that were
obtained in the complete NLO calculatiofs][£1], 12]. We find that the Sudatwobld logarithms
cancel in the sum over diagrams and that power-divergent contrilsutiom the endpoint region
vanish. In Sed]3, we give a general analysis of the Sudakov douddetlums that elucidates the
reason for their cancellation in the sum over diagrams. In[$ec. 4, wegjeeeral analysis of the
endpoint region that establishes the absence of power-divergatnibcions. We summarize our
results in Sed]5.
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2. Calculation of doublelogarithms

In this section, we evaluate the double logarithms that appear in the NLO QE&&rtons to
the amplitudeste™ — J/¢ + n¢, and we identify the momentum regions that are associated with
the logarithms. The processe™ — QQ1(3S)) + QQ1(1S) is composed oéte™ — y*, followed
by y* — QQ_1(381) +Q(51(1So). Because the processe™ — y* does not receive QCD corrections
in relative ordera®as, we need to consider only the procggs— QQ1(3S1) + QQ1(1S) in the
evaluation of the NLO QCD corrections.

2.1 Kinematics, conventions, and nomenclature

Now we describe the kinematics, conventions, and nomenclature that we caleulating
the double logarithms and throughout this paper. We work in the Feynmage galle use the
light-cone momentum coordinatés= [k, k=, k] = [(K° +k3)/v/2, (K — k%) /v/2 k] and work
in thee™ e -center-of-momentum frame. Because our calculation is at LD\ive set the relative
momentum of the andQ in each charmonium equal to zero. Then, the momenta ofthad
Qin theJ/y are bothp = [(/P2+ M + P)/v/2, (\/P?+mé —P)/+/2,0,], and the momenta of
the Q andQ in the n are bothp = [(/P2+ M2 — P)/v/2, (\/P2+ M2+ P)//2,0,], whereP is
the magnitude of the 3-momentum of any of tbeor(?s. The momentum of the virtual photon is
Q=2(p+ p), which implies that? = 16(P?+ mg). If a momenturk has light-cone components
whose orders of magnitude aPa [1, (n%)?,n*], then we say thak is soft if A < 1, and we say
thatk is collinear to plus ifn™ < 1. If k has light-cone components whose orders of magnitude
arePA[(n7)?,1,n7], then we say thak is soft if A < 1, and we say that is collinear to minus if
n~ < 1. Hencepis collinear to plus ang is collinear to minus in the limitg/P? — 0.

2.2 Evaluation of the diagrams

Now we calculate the double logarithms that arise from the Feynman diagrainesitiiabute
to the NLO QCD corrections to the amplitude. The amplitudes for each diagrataicspin and
color projectors that put tk@@ pairs into states of definite spin and colpr][18]. When the relative
momentum of the&) andQ_in each charmonium is zero, the spin-singlet and spin-triplet projectors
are given by

m(m:—zémvs(mm, (2.1)
Ma(p.p.A) = —Zémﬁ*uxm o), (2.2)

wheree*(A) is the polarization vector for tk@dpair in the spin-triplet state.

The NLO diagrams that contain the double logarithm@%imZ are shown in Fig]1. Because
the processte™ — J/ + n does not satisfy quark-helicity conservation, its amplitude must con-
tain a numerator factan;, which produces a helicity flip. Hence, the amplitude is suppressed by a
factor ofm;/Q relative to a helicity-conserving amplitude. The faatgrcan come from the numer-
ators of the quark propagators or from the numerators of the spin prgedVe must also retain a
nonzero quark mass in denominators because logarithmic collinear andirtrdipergences that
appear in the calculation are sensitive to that mass.
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Figure 1: One-loop diagrams that produce double logarithm@ofimé. The uppeQQ_pair corresponds to
theJ/y, and the loweQQ pair corresponds to the..

A straightforward calculation of the diagram in Fig(al gives

_ —iasQ? 1 - ddk 1
'mox2<CF_2CA>X{/(2n)d(k2+I£ (k4 p)?—mg +ie][(k— p)>—mg +ie]

ddk 1
+/< 2108 [(k+ p+ p)2+i€][(K+2p+ P)2— M+ i€][(K+ p)2— e +ié]

+/ ddk ! +} (2.3)
d(kZ+ie)[(k+p)2—me+ieg][(k+ p+ p)2+ig] ’ '

where we retain only the terms that contain the double logarithn@ jm¢. Here,Cr = (N2 —
1)/(2Nc), Ca = N¢, d = 4—2¢, andiao is the LO (orderes) contribution to the amplitude
i/ [y — QQ1(°S1) + QQ1(*S)]:

iAo = —i256masCr ghvaBy

v(A)Pa g, (2.4)
wherep is the polarization of the virtual photon. We use the nonrelativistic normalizé&tiotine
spinors.eMva8 s the totally antisymmetric tensor in 4 dimensions, for which we use the convention
€0123= 1. We evaluate the first integral in E¢. {2.3) using dimensional regulanitgioontrol the

soft divergence. We find that

. /ddk 1
(k2+ig)[(k+p)2—me+ig][(k—p)2—m2+ig]

47T2Q2{[ —log(mg/u?) Iog(mﬁ/QZHzlogz(nﬁ/Q2)+-~}, (2.5)

where we retain only the terms that are singulag and the double logarithms.



Endpoint Logarithms inee™ — J/ + e Hee Sok Chung

We have carried out a detailed analysis of the first integral in[Eq. (2.8jrtakes use contour
integration for the integration ovdw. That analysis shows that double logarithm in this integral
comes from the region in which the gluon with momentkiis simultaneously soft and collinear.
That is, it is a Sudakov double logarithm. The second integral in[Ed. (2i8¢iical to the first
integral if we change the loop momentumkté p+ p. Hence, the second integral gives a Sudakov
double logarithm that comes from the region in which the gluon with the momekituip+ p is
simultaneously soft and collinear. The last integral in Eq] (2.3) yields

1

d4k |
° / 3 e i) (kT PP e el (K pr e e — g 09 (me/Q) +-+ .
(2.6)

where again we show only the double-logarithmic contributions. (In this iaketjrere is no sin-
gularity in €.) A detailed analysis, which makes use of contour integration fokghetegration,
shows that the double logarithm in this integral comes from the momentum regishich the
gluons carry almost all of the collinear-to-plus and collinear-to-minus monientathe spectator-
quark line to the active-quark line. We call a contribution from this momentgionean endpoint
contribution. An important observation is th&tcan be made to look similar to the integral that
gives the Sudakov double logarithm by changing the loop momentum to theaspeguark mo-
mentum? = —k— p. Then, we have

d4€ 1
&= / Lol p2tie[(l—pPrie] 2.7)

It follows that the endpoint double logarithm arises from the region in wtiiehmomentum of
the spectator quark, is soft and collinear. From Eqg[ (P.7), we see that the soft and collinear
divergences are regulated by. An analysis of Eq.[(2]7) also shows that single logarithms of
Q?/m¢ can arise from the region in which the momentum of the spectator quark is soft.

Carrying out similar analyses of the remaining diagrams that contribute to thtuaep
v* — QQ1(3S1) + QQ1(1S) at ordera?2, we find that the double logarithms in each diagram are
accounted for by Sudakov double logarithms and endpoint double logaritithe Sudakov and
endpoint double logarithms that arise from each diagram are summarizablleJ.. Our result for
the sum of double logarithms in all of the NLO diagrams agrees with the resulisfin B2,[15].
We also find that our results in the Feynman gauge for the double logarithaclindtagram agree
with the results that were obtained in carrying out the calculation of Réf.}[16

Our detailed calculations are consistent with two general properties ofuthek8v and end-
point singular regions: (1) the Sudakov double logarithms cancel in theosar diagrams; (2) the
endpoint region produces only logarithmic singularities, not power singigka In the following
sections, we show how these general properties arise from soft-eollpproximations that are
valid in the Sudakov and endpoint regions.

3. General analysis of the Sudakov doublelogarithms

As we have mentioned, Sudakov double logarithms arise from a region imwieanomen-
tum of a gluon is simultaneously soft and collinear. We would like to apply a calliapproxima-

IWe thank Yu Jia and Xiu-Ting Yang for providing us with the logarithmic conitiims of the individual NLO
Feynman diagrams.
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Diagram | Endpoint double logarithm Sudakov double logarithm
(a) (Cr — 3Ca)& 2(Cg — 3Ca).
(b) Ce& 0
(©) 2Ce& 0
(d) 3Ce& 0
(e) (CF — %CA)g (CF — %CA)y
(f) 0 (Ce — 3Ca).7
©) 0 —(Cr - Cn).7
(h) 0 —(Cr — 3Cn).7
(i) 0 —(Cr — 3Ca).
0) 0 —(Cr — 3Ca)

Table 1: Endpoint and Sudakov double logarithms in each diagramiits ofi.c4 o x (—iasmQ?)/2.

tion to such gluons. Consider, for example, F[d®)&nd(g), in which a gluon with momentum
k that is collinear to minus is emitted from a quark line with momenfurithen, the quark-gluon
vertex and the two propagator numerators surrounding it can be written as

(B+me) M (p+ K+ me) = 2(pH + KH) (P+ me) — kyHm, (3.1)

wherep is the polarization index of the gluon, we have uggd] pp and pp = mZ, and we have
dropped terms of orderg. In the collinear-to-minus approximation, one retains only the first of the
two terms on the right side of Ed. (B.1). In the case of nonzero quarkesiabis approximation is
not valid in general. However, Kis soft in comparison t@, as well as collinear, then we can drop
the second term on the right side of Efg.}3.1), and the standard collippamd@mation holds. [We
can also dro in the first term on the right side of EJ. (B.1).] Since the current in Eq]) (8ot
lies in the minus light-cone direction, up to terms of ord®; we can make a collinear-to-minus
approximation in the gluon propagatfr][19] B0, 21], by making the replateiméne polarization
tensor

Ky Py
k-p—ig’

Juv — (3.2)
where the indew corresponds to the attachment of the gluon to the quark line that is collinear to
minus and the sign ak is fixed by the sign in the original Feynman diagram. This approximation
is valid unless thequ attachment of the gluon is to a line that is also collinear to minus. Hence,
the approximation always holds for the diagrams that produce Sudakaritlogs because the
invariantQ? in the logarithm can appear only if the soft-collinear gluon connects a lingiogr
momentump with a line carrying momenturp. The replacemenf (3.2) can also be regarded as a
soft approximation[[37, 23] to the attachment of the gluon. However, the collinear approximation
can be more useful in applications other than the present one becausmits independent of the
direction of the momenturp, while the form of the soft approximation is not.

For the diagram of Fid]]®) we can apply the soft-collinear approximatign |3.2), where the
index u corresponds to the connection of the collinear-to-minus gluon to the apiaek line that
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carries momentunp:

o, 1 _ . kpY 1 L pY
P ke merie T Picpiepkomorie . " Picpoie

(3.3)

where, in the last equality, we have applied the graphical Ward identityn(ray identity). Sim-
ilarly, for the diagram of Fig[]dg) we can apply the soft-collinear approximatign |3.2), where the
index u corresponds to the connection of the collinear-to-minus gluon to the spegtaik line
that carries momentump:

1
—p+Kk—me+ie

1 kp”
- —p+Kk—me+iek- p—i‘sV

(p) =+ P v(p). (34

v
y'v(p) K p_ic

Because the outgoin@@ pairs are in color-singlet states, these two contributions have the same
color factor and cancel. This type of cancellation extends to all diagrarofvzing a gluon with
soft-collinear-to-minus momentum. Similar cancellations occur for diagrams ingobv gluon

with soft-collinear-to-plus momentum. Therefore, in the sum of all diagramdal®v double
logarithms cancel.

4. General analysisof the endpoint region

As we have mentioned, the endpoint double logarithm&dfmé arise from the region of
loop integration in which the momentumof the internal spectator-quark line is simultaneously
soft and collinear. Hence, we need to consider only diagrams that odog® such a momentum
configuration. These diagrams are shown in Hilja)4f). (A diagram and its charge conjugate
give equal contributions to the amplitude. The charge-conjugate diagramstsshown in Fig.]1.)
The endpoint double logarithms arise from contributions in which there isreerator factom,
which produces the helicity flip, and in which integrals diverge logarithmicaltjiénlimit m. — 0.

In general, integrals can also diverge as inverse powang of the limit m; — 0, but, as we shall
see, such contributions vanish when the numerator trace is taken.

In diagramga), (e), and(f), the momenta of the propagators on the active-quark lines contain
both p andp. Sincep- p ~ P2 ~ Q?, we can ignore in the denominators of those propagators. In
the limit m; — 0, the two gluon-propagator denominators and spectator-quarkgatmgyalenomi-
nator produce factors/1¢? +2p- /), 1/(¢? — 2p-¢), and 1/¢2, respectively, where we have dropped
themg terms in the propagator denominators. Hence, in order to obtain a logarithndadhgent
soft power countX ~%) and logarithmically divergent collinear power countgf)~#], we must
drop all numerator factors df This implies that the helicity flip comes from the factog in the
numerator of the spectator-quark propagator.

In diagram (b), the momentum of the outermost active-quark propagattaios the momen-
tum p, but not the momenturp. Hence, in the limitm; — 0, the denominator of this propagator
produces a factor /{¢? 4 4p-¢). Then, all of the propagator denominators taken together pro-
duce a linearly divergent soft power count and a linearly divergelinear-to-plus power count.
However, it is easy to see that numerator factors reduce both of these pounts to logarithmic
ones. First, we rewrite the numerator factors that are associated withtdrenogt gluon and the
spin projector for thel/y QQ pair asyu(p—me)g y* = 2meg”, where we have used the fact that
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p-&* = 0. Now, because the numerator powengfis in this factor, the numerator of the spectator-
quark propagator must contribute a factofFurthermore, the numerator vanishes, up to terms of
ordermy, if ¢ is proportional top because there are then two factorgidhat are separated by
matrices with which they anticommute. Hence, in the trace oveytimatrices,/ must appear in
the combinatior? - p. This numerator factor reduces both the soft and collinear power ctunts
logarithmic ones.

In the case of diagram (c), the denominator of the outermost activé-quapagator con-

tributes a factor 1(¢2 —4p- /). Hence, the soft and collinear-to-minus power counts from the prop-
agator denominators are both linearly divergent. Now, we rewrite the raionéactors that are as-
sociated with the outermost gluon and the spin projector fonth@Q pair asyu(—p—me)ysyH =
(—2p+4me)ys. If the numerator factom. comes from the spectator-quark propagator, then there
must be a factof from the outermost active-quark propagator, or else there are twoesdjtac-
tors of pand the numerator vanishes, up to terms of ordferlf the numerator factom, does not
come from the spectator-quark propagator, then that propagator ieldseynumerator factof.
In both cases, the numerator factor vanishes, up to terms of wgdéfr ¢ is proportional top be-
cause, in that case, there are two factorp tifat are either adjacent or are separate¢ matrices
with which they anticommute. Therefore, we conclude that the trace contéesoal - p, which
reduces both the soft and collinear-to-minus power counts to logarithmé one

In the case of diagram (d), the denominators of the active-quark gatpa produce factors
1/(£?+4p-¢) and Y (¢?> —4p-¢). Hence, the propagator denominators, taken together, produce a
quadratically divergent soft power count and linearly divergetitnear-to-plus and collinear-to-
minus power counts. One can apply the arguments that were used fomtteeatars of diagrams
(b) and (c) separately to each of the gluons in diagram (d), with the cginolthat the numerator
contains two factors gfand that the numerator vanishes, up to terms of ardeif ¢ is proportional
to p or to p. Hence, the trace contains a factep/ - p or a factor/?. In either case, the numerator
factor reduces the soft and collinear power counts to logarithmic ones.

In the case of one-loop corrections to helicity-conserving charmoniwdegtion processes,
in which there is no numerator factoy, the previous arguments show that the contribution from
the region in which the spectator quark carries a soft-collinear momentuishesnimplying that
there are no endpoint double logarithms. This general conclusion isroexlfin explicit calcula-

tions [16,[21[2p].

5. Summary

In this work we have investigated the origin of the double logarithm@%gh¢ that appear in
the NLO QCD corrections to the processe — J/ + n.. We find that the double logarithms
in each diagram are accounted for by Sudakov double logarithms apdiahdouble logarithms.
The Sudakov double logarithms cancel in the sum of all diagrams. We e @ general ar-
gument for this cancellation that is based on the soft-collinear approximatthgraphical Ward
identities. We have reinterpreted the region of a loop integration that gseta an endpoint
double logarithm as a leading region in which the momentum of the spectatidlin&is both
soft and collinear. Under this reinterpretation, we would also expectesiagarithms ofQ?/m2
to arise from a leading region in which the momentum of the spectator-quarisis@t. This
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reinterpretation may be useful in establishing an all-orders factorizatiamethmefor helicity-flip
quarkonium production. Such a factorization theorem might allow one tardsgarithms of
Q?/n¢ to all orders inas for helicity-flip processes. We have also given a power-counting aisaly
of the one-loop endpoint contributions, which shows that they can amigarothe presence of a
helicity flip and that the loop integration can produce logarithms, but notseveowers, of the
heavy-quark massy.
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