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We consider non-perturbative effects in Yang-Mills theories in the deconfining phase, T > Tc.
Such effects might determine large-distance physics of the quark-gluon plasma. The basic theo-
retical tool is the use of the dual models for large-Nc Yang-Mills theories. Large-distance physics
corresponds to the physics of the stretched horizon in the dual models. We consider nonpertur-
bative effects at T > Tc in parallel with the much more commonly known case of the confining
phase, or T = 0. We start with an analogue to instantons which turns to be 3d (spatial dimensions)
point-like defects. These high-temperature defects are not related to the topological charge and
their signature is not so clean as that of instantons. Nevertheless, they contribute to the pressure
and energy density of the plasma in a well deifned way, and this prediction can be tested on the
lattice. There are also more complicated defects which are analogues of the magnetic strings of
the confining phase. In this case, the signature of the lower-dimensional defects in the deconfining
phase is similar to that of the thermal scalar.
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Stretched horizon vs QGP observables V.I. Zakharov

1. Introduction

Holographic models represent an alternative approach to non-perturbative, or large-coupling
theories. In case of Yang-Mills theories, either pure or with quarks, no dual models were actually
found, however. The best achievement remains the model [?, ?] which belongs in the infrared
to the same universality class as the large-Nc Yang-Mills theories. The geometry of the model at
temperature T = 0 is fixed as:

ds2 =
( u

R

)3/2
(
−dt2 +δi jdxidx j + f (u)dx2

4

)
+
( u

R

)3/2
( du2

f (u)
+u2dΩ

2
4

)
, (1.1)

where f (u) = 1−
(uΛ

u

)3
, x4 ∼ x4 +β4 , β4 =

4π

3
(R3

uΛ

)
.

Here u is an extra coordinate, ∞ > u > uΛ, which is conjugate to the momentum transfer, or res-
olution of measurements in the standard 4d space. The flux through the 4d unit sphere, dΩ4, is
holographically related to the baryonic charge and will not concern us here. The limit u → ∞

corresponds to the physics in the ultraviolet, or measurements with perfect resolution. One would
expect to find the standard 4d space on this boundary, u=∞. This is not true, however, in the model
considered. Instead, there lives on the boundary a 5d space, which is the ordinary Minkowski space
plus an extra compact coordinate, x4, with periodicity denoted as β4. The parameter β4 is of order of
the hadronic scale, β4 ∼ Λ

−1
QCD. The presence of this, unphysical coordinate limits the applicability

of the model to large distances, rhydro,

rhydro � Λ
−1
QCD . (1.2)

This means that, as far as the hadrons are concerned, only the pion physics can be consistently con-
sidered at small temperatures [?]. Another, much less emphasized application of the model (??) is
the theory of vacuum defects, or condensates, for examples and review see [?, ?, ?]. Geometrically,
the lower-dimensional defects correspond to branes wrapped around at least one of the compact
coordinates. Such defects are topologically stable as far as the radius of the corresponding compact
coordinate does not vanish. If it does vanish then the corresponding defects are not suppressed by
large Nc and might condense. In these two cases, pions and vacuum defects, when the model (??)
is expected to apply, it does turn to be a success. Also, due to the presence of the horizon at u = uΛ,
the model incorporates the confinement.

One of the crucial points is that the wrapping nx4 times around the x4-circle implies a non-
trivial topological charge associated with the defect,

Qtop = ±nx4 ,

where the sign depends on the direction of the wrapping. The topological charge here is the stan-
dard one: Qtop = g2/16π2 ∫ d4x(Ga

µνG̃a
µν) , where Ga

µν is the field-strength tensor of the gluon
field.

At the temperatures above the deconfinement phase transition, T > Tc, one deals with the
plasma. As is by now well known, for a review see, e.g., [?] the quark-gluon matter at T > Tc

is well described by hydrodynamics and one can talk about the strongly interacting quark-gluon
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plasma. Remarkably enough, the limit (??) becomes the hydrodynamic limit. Thus, hydrodynam-
ics is the main focus of our discussion. Note that the geometry (??) is to be modified at high
temperatures. First, usually one is considering the Euclidean version of the model, with the com-
pact time direction τ: τ ∼ τ + 1/T . Moreover–and this point turns to be crucial–the position of
the horizon is no longer fixed at uh = uΛ but is inverse proportional to the temperature, uh ∼ 1/T .
The deconfinement phase transition happens at the point β4 = 1/T and is viewed in the dual models
as the Hawking-Page transition of the general relativity [?].

In the next sections we will consider consequences from the dual model introduced above for
the non-perturbative effects in Yang-Mills plasma (presumably, adding quarks does not change the
basic properties of the plasma). This talk is partly based on the papers [?].

2. Three-dimensional “thermal instantons"

In the language of the dual models, the BPST instantons of the Yang-Mills theory are iden-
tified with D0 branes,– which are one-dimensional objects,– wrapped once around the compact
x4-dimension [?]. The action associated with the instantons is proportional to the radius of the
x4-circle,

Sinstanton ∼ T1 ·Rx4 , (2.1)

where T1 is the tension of the D0 brane. The crucial point is that according to the model (??) the
radius Rx4 vanishes on the horizon, u = uh:

lim
u→uh

Rx4 = 0, T < Tc . (2.2)

Eq. (??) implies that the instanton action vanishes on the horizon, or in the far-infrared.
In the standard field-theoretic language instantons are specified through the position of the

center, x0 and size ρ . The D0 branes are point-like defects in ordinary 4d space and their position
can be identified with x0. A D0 branes has a particular value of the coordinate u as well. As is
mentioned above, the value of the coordinate u is associated with the resolution, or smearing in the
ordinary space. Tending u→ ∞ corresponds to the instanton size ρ → 0, while tending u→ uΛ

corresponds to ρ→∞. Thus, vanishing of the action of the D0 branes on the horizon, exhibited by
the Eqs. (??,??) does agree qualitatively with the standard field-theory result according to which
the instanton action is given by Sinstanton = 8π2/g2(ρ) and, indeed, vanishes in the limit of strong
coupling, or size ρ being large.

Consider now the deconfining phase, or T > Tc. In this case the dual model considered contains
a black brane (generalization of black hole to higher dimensions) situated at u = uh ∼ 1/T .
Moreover,

lim
u→uh

Rτ(u) = 0, Rx4(u) = const, T > Tc , (2.3)

where Rτ is the radius of the Euclidean time coordinate. Now, the D0 brane wrapped around the
τ-direction has a vanishing action in the limit of coordinate u approaching the horizon, u→ uh [?].
We could call the corresponding defect as “thermal instanton". Periodicity of the defect in the τ

coordinate means that we have a static defect, depending on spatial coordinates x.
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Unlike the case of the ordinary instantons, there is no immediate candidate for the “thermal
instanton" in terms of field theory. There does exist, however, a well-known defect, the Polyakov
line,

L(x) =
1

Nc
Tr(P exp ig

∫ 1/T

0
A0(x,τ)dτ ) , (2.4)

which shares some properties of the conjectured “thermal instanton". Indeed, the Polyakov line
(??) depends only on the spatial coordinates. Moreover, it is widely speculated that in the decon-
fining phase the vacuum expectation value

〈L〉 6= 0 ,

see, e.g., [?] and references therein. The main difference of the defect (??) from the “thermal
instanton" is that in the latter case the direction of the wrapping around the Euclidean time mat-
ters. We can suggest the following analogy. For ordinary (anti)instantons there are two different
solutions corresponding to Qtop = ± 1, or G2 = ±GG̃. However, if we concentrate on vacuum
properties then instantons generate < G2 >instantons 6= 0 while < GG̃ >instantons = 0. Similarly,
the non-vanishing expectation value

< L >thermal instanons 6= 0

can be generated by the thermal instanstons although the value of L is not sensitive to the direction
of the wrapping around the Euclidean time coordinate.

3. Nonperturbative pressure and energy density

Let us start again with the instanton example. As is mentioned above, instantons generate
< G2 >instantons 6= 0. On the other hand, G2 is proportional to the action density of the gluon fields.
Thus, instantons are generating non-perturbative action density, or cosmological constant, finite at
that. The crucial point is that this action is negative in the Euclidean time

Snon−perturbative = − (const)
∫

d4x , (3.1)

where the constant in the r.h.s. is positive definite [?]. Note also that this observation concerning
the sign applies actually to any non-perturbative fluctuations, not only to the instantons. The reason
for the negative sign is that the pure perturbative vacuum has action larger than the true vacuum,
which includes the non-perturbative contributions as well. The non-perturbative effects are so to
say “always present", and this is the physical meaning of the negative action.

Generalizing to the case of the deconfinement, we have static non-perturbative defects [?, ?].
They do generate non-perturbative action density corresponding to 3d branes in 4d space:

< Tµν >non−pert ∼ (0,−p,−p,−p) ,T > Tc , (3.2)

where the constant p is positive and depends on a particular model of the non-perturbative physics.
Another formulation is that the trace of the energy-momentum tensor generated non-perturbatively
is negative-definite:

< Tµµ >non−perturbative < 0 . (3.3)

Note that there is strong support for the validity of (??) coming from the lattice measurements [?].
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4. Thermal D2 branes

Apart from D0 branes one should consider defects of other dimensions. In particular, it has
been established that in the confining phase, T = 0, so called magnetic strings play the central role
[?, ?, ?]. The magnetic strings are three-dimensional branes, once wrapped around the compact x4

direction and having two non-compactified directions, which means that they represent strings in
the ordinary 4d Euclidean space and are topologically charged. These branes have also a vanishing
action in the infrared, due to the same geometric property (??).

Similarly, we expect D2 branes wrapped around the Euclidean compact time coordinate to
be unsuppressed by the action in the thermal vacuum at T > Tc [?]. There are two types of such
branes. First, we may have D2 branes with two non-compact spatial coordinates. From the point
of view of 3d space these defects would look like strings. Moreover 2d defects in 3d space are
equivalent to 1d defects (on the dual lattice). The 1d defects, or lines correspond, in turn, to
particles in the language of the quantum geometry, see, e.g., [?]. Thus, we expect emergence of a
non-perturbative scalar field, ϕ . Moreover, this field is to be complex and, therefore, the vacuum
trajectories, corresponding to the vacuum loops, are to be closed lines. The statement that

ϕ 6= ϕ
∗

follows from the fact that we started from defects wrapped around a circle, and the directions of
the wrapping are topologically distinguishable. It is amusing that a similar 3d scalar field was
introduced long time ago as the so called thermal scalar, for details and references see, e.g., [?].
Moreover, it seems plausible that the scalar field ϕ associated with the D2 branes considered con-
denses:

< ϕ > 6= 0 .

In case of the thermal scalar such a condensation was conjectured long ago, for details and refer-
ences see, e.g., [?, ?]. We will come back to discuss this point further in Section 6.

Coming back to the thermal D2 branes, we note that there is another possible type of such
defects. Namely, the branes can be wrapped both around the x4- and τ-circles, with one remaining
non-compact coordinate belonging to the ordinary 3d space. These objects would also correspond
to 3d fields. A conspicuous feature of these defect is that they are topologically charged. On
the other hand, they are static. Combining these two observations, we conclude that dyons are
predicted to exist in the thermal vacuum. Colour electric and magnetic fields are predicted to be
equal,

|Ea| = |Ba| . (4.1)

In the field-theoretic language the dyons are described by a doublet of complex scalar fields.
To conclude, there is quite a variety of low-dimensional defects predicted to exist in the Yang-

Mills plasma at T > Tc. It is rather a proliferation of the defects which makes the problem if we try
to compare the predictions with the lattice data. Moreover, various defects can merge, for details
and references see, e.g., [?]. Thus, we cannot claim that the predictions are already fixed in a unique
way. Nevertheless, let us emphasize that the lattice evidence is indeed encouraging. In particular, it
is only recently (and unexpectedly) that self-dual dyons, satisfying (??) have been detected on the
lattice in the deconfining phase.
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5. “Euclidean superfluidity"

Let us emphasize again that to apply duality with the stretched horizon one should not con-
sider measurements with poor resolution. It is not for the first time that measurements with poor
resolution are invoked to check theory. Indeed, let us recall measurements of the topological sus-
ceptibility χ defined as ∫

d4x < GG̃(x),GG̃(0)> χ, (5.1)

where G ˜G(x) is the density of the topological charge, (see, e.g. [?] and references therein). Since
χ ∼< Q2

top > the susceptibility is positive definite. At first sight, there is no surprise in this since,
say, contribution of instantons to (??) is also positive.

In fact, the condition χ > 0 is far from being trivial since for any x 6= 0 the sign is just opposite:

< GG̃(x),GG̃(0)>exact < 0, x 6= 0 . (5.2)

This is a consequence of the unitarity (and refers to the Euclidean case). This means that the
positive contribution to χ can only be singular, or of the form:

< GG̃(x),GG̃(0)>local = δ
4(x)

((const)α2
s

a4 +(const)Λ4
QCD

)
, (5.3)

where a is a cut off. Such a local term cannot be measured directly since it depends on details of
definition of the product of operators at coinciding points. The way out is to introduce so called
cooling, or suppression of ultraviolet fluctuations. Then the positive term becomes non-local and
is determined by instantons. Introduction of cooling corresponds to introducing poor resolution.
Note also that cooling is not a unitary deformation of the original fields.

Coming back to the deconfining phase, imagine that we have condensation of a 3d complex
field. Then there would emerge a massless 3d Goldstone. Such a particle would be manifested in
the static correlator of momentum densities:∫

d3xexp(iqiri)< T0i(r),T0k(0)> ∼ qiqk

q2 . (5.4)

Non-vanishing of the coefficient in front of the pole term is a well known signature of superfluidity.
At first sight, we should expect all this to happen if the thermal scalar is condensed. However,

the problem is that the thermal scalar behaves as a particle, i.e., its wave function oscillates, in the
Euclidean time. Thus, this contribution would contradict unitarity. Optimistically, we can expect
to observe correlator of the form (??) in measurements with poor resolution. Such a phenomenon,
if observed, could be called “Euclidean superfluidity".

6. Exotic liquid living on the stretched horizon

So far, we have been discussing manifestations of condensation of various lower-dimensional
defects. We could also apply duality in a different way, assuming that the properties of the liquid
living on the stretched horizon, see, e.g., [?], are shared by the gluonic plasma, provided that the
measurements are made with poor resolution. Moreover, for large black holes the near-horizon
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space can be approximated by the Rindler space. Within this approximation, a remarkable ob-
servation was made recently [?] that the liquid on the stretched horizon in the dissipation-less
approximation can be described by a relativistically invariant action. Namely, the action associated
with a d-dimensional hypersurface in the (d+1) dimensional Rindler space takes the form [?]:

Sliquid = T
∫

ddx
√
−γ , (6.1)

where T is tension, and the action refers to the following metric tensor γab (a,b = 0,1, ..,(d−1))

γabdxadxb ≡ − rcdτ
2 +dxidxi , (6.2)

where rc is a constant. The relation to the liquid is provided, as usual, by identification of the
normalized gradient of the scalar field ϕ with the four-velocity of an ideal liquid ua:

ua ≡ ∂aϕ/
√

X , X ≡ − (∂ϕ)2 ≡ (∂0ϕ)2− (∂iϕ)
2 . (6.3)

Finally, the equilibrium solution is given by ϕequilibrium = t .
For the equilibrium energy-momentum tensor one readily finds:(

Tab

)
equilibrium

= −
(
0, p.., p)

)
, p = 1/

√
rc , (6.4)

and the pressure p is singular in the limit rc→ 0 (which corresponds to the actual horizon of the
black hole). Note that such a form of the equilibrium energy-momentum tensor for the liquid on
the horizon is known independently from the membrane paradigm [?].

It is amusing that the action (??) can be independently derived starting from the picture de-
scribed in Sect. 2, that is, static defects in Euclidean space. The scalar ϕ corresponds then to
influctuations of 3d volume. Thus, it is no surprise that the form of < Tµν > given by Eqs. (??)
and (??) coincide with each other. What we learn new from Eq. (??) is that the absolute value of
the (negative) pressure associated with the non-perturbative physics is to be large. This prediction
appears to be in qualitative agreement with the lattice data [?].
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