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1. Introduction

Recent work on confining gauge theories on R3× S1 has revealed that a confined phase can
exist at small circumference of S1 if certain deformations or fields are added to pure gauge theories;
see [1] for a review. The use of R3× S1 with a small circumference, as opposed to R4, makes the
gauge coupling small. Thus we now have four-dimensional field theories in which we can study
confinement using semiclassical methods.

With confinement in the pure gauge theory on R3×S1 under analytic control, we extend these
results by introducing scalar fields [2]. Together with a deformation term, the scalar potential
added to the model will allow us to examine the relationship between confinement and the Higgs
mechanism and to explore what turns out to be a very rich phase structure.

2. The effective potential

We consider deformed SU(2) gauge theory with a scalar field in the adjoint representation.
The phase diagram of our model can be constructed from an approximate form of the one-loop
effective potential, including the deformation term. The effective potential can be calculated in
background field gauge, with the background fields for scalar field, φ = (0,0,v) and the Polyakov
loop, P = exp

(
ig
∫ L

0 dx4A4

)
= diag [exp(iθ) ,exp(−iθ)], where g is the gauge coupling. The total

one-loop effective potential, U , constitutes of three parts when the circumference of S1, L, is small:

U = Vc +VL +Vd (2.1)

where Vc is the classical contribution, which is the sum of the kinetic term and the scalar potential

Vc(φ) = g2TrF [A4,φ ]2 +
1
2

m2
φ

2 +
1
4

λ
(
φ

2)2
. (2.2)

The positivity of the kinetic term for the adjoint representation implies that the effective potential
will be minimized if [A4,φ ] = 0. The finite-L effective potential, VL, of both the gauge fields and
adjoint scalar field can be written as

VL =
2π2

L4 B4

(
θ

π

)
+

(
m2 +λv2 +3g2v2

)
2L2 B2

(
θ

π

)
+

λv2

4L2 (2.3)

where Bk is the Bernoulli polynomial.
In order to realize the confined phase for small L, we will add a double-trace deformation term

Vd . This term will be a Z(N)C-invariant function of P, and therefore will be nonlocal in the compact
variable x4. Many forms of Vd may be used, such that the confined phase is favored for some range
of parameters. We consider two forms which give rise to the second order phase transition. First
one takes the form

Vd = h1L−4 (TrFP)2 +h2L−4 (TrFP)4 . (2.4)

For sufficiently large h1 > 0, the symmetry will be restored. Furthermore, larger values of h2 make
the phase transition continuous. We plot the phase diagram of the deformed SU(2) as shown in
Figure 1(a). The second choice, which we found was the most analytically tractable, is based
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Figure 1: Deformed SU(2) phase diagrams

on the one-loop potential for N f adjoint Dirac fermions with periodic boundary conditions in two
dimensions. These sheets of two-dimensional fermions can be embedded in four dimensions with
a density (N4/L)2 in the plane orthogonal to the plane of the fermions with mass M

Vd =
2MLN f N2

4
πL4

∞

∑
n=1

K1 (nML)TrAPn

n
(2.5)

where Kn is the modified Bessel function. The infinite series can be summed exactly in the limit
when the mass goes to zero,

lim
M→0

Vd =
2N f N2

4
πL4

∞

∑
n=1

TrAPn

n2 =
4N f N2

4
πL4 (θ −π/2)2 (2.6)

where 0 ≤ θ ≤ π . This deformation leads to a second-order phase transition at some N f for suf-
ficiently small M as shown in Figure 1(b). We will use the M = 0 form in what follows, thereby
obtaining a second-order deconfinement transition.

Finally, the one-loop effective potential becomes

U =
1
2

m2 (L)v2 +
1
4

λ (L)v4 +
2

π2L4

(
θ − π

2

)4
+

a
L4

(
θ − π

2

)2

+

(
m2 +λv2 +3g2v2

)
2π2L2

(
θ − π

2

)2
(2.7)

where we have defined the dimensionless parameter

a≡
4N f N2

4
π
−1. (2.8)

In order for us to take the phase diagram predicted by our one-loop effective potential seriously,
both the gauge coupling g(L) and the scalar coupling λ (L) must be small. The gauge coupling is
naturally small at a scale where ΛL� 1 as a consequence of asymptotic freedom, but the scalar
coupling must be tuned to make λ (L) small.
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Figure 2: Phase diagram of SU(2) Higgs model
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, 〈TrF [Pφ ]〉).
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Figure 3: The phase diagram showing the region
where the dilute monopole gas approximation is valid
and SBPS ≈ SKK . The dilute gas region itself is some-
what larger than the shaded region.

3. The phase diagram

An understanding of the overall phase structure can be based on the global symmetries of this
class of models. The action is invariant under two global Z(2) symmetries. The first symmetry,
Z(2)H is the invariance of the action under a transformation of the scalar field φ →−φ . The other
global symmetry, Z(2)C, is associated with the center symmetry of the SU(2) gauge group, and is
present because all fields have 0 N-ality. Under this global symmetry, the action is invariant, but
the Polyakov loop P transforms as P→−P. It is useful to consider three distinct gauge-invariant
order parameters associated with the Z(2)C×Z(2)H symmetry. Although these order parameters
are nonlocal in the compact direction, they are local in the three noncompact directions. The first
of these is the trace in the fundamental representation of the Polyakov loop P itself, 〈TrFP(x)〉,
which is independent of x4. It transforms nontrivially under Z(2)C but is invariant under Z(2)H .
The second is

〈
TrF
[
P2 (x)φ(x)

]〉
which is invariant under Z(2)C, but transforms nontrivially under

Z(2)H . Finally, there is 〈TrF [P(x)φ(x)]〉, which transforms nontrivially under both groups.
The phase diagram as a function of a and m2, which are the controlling parameters of the

effective potential in Equation 2.7, is shown in Figure 2 with the values of three order parameters
and the residual symmetries. There is a phase that is unique in this model, where Z(2)C×Z(2)H

spontaneously breaks to Z(2). We will refer to this phase as the mixed confined phase. The mixed
confined phase in some sense takes the place of a phase where Z(2)H is broken but Z(2)C is unbro-
ken, which would be a phase where both the Higgs mechanism and confinement hold. The fact that
the Higgs and confined phases are not compatible in our model is consistent with the arguments
made by ’t Hooft [3, 4].

4. Nonperturbative effects

4.1 Classical monopole solutions

The nonperturbative dynamics of gauge theories on R3×S1 are all based on Polyakov’s anal-
ysis of the Georgi-Glashow model in three dimensions. This is an SU(2) gauge model coupled
to an adjoint Higgs scalar. The model we are considering thus differs by the addition of a fourth
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compact dimension and a suitable deformation added to the action. The four-dimensional Georgi-
Glashow model is the standard example of a gauge theory with classical monopole solutions when
the Higgs expectation value is nonzero. They are topologically stable because Π2 (SU (2)/U (1)) =
Π1 (U (1)) = Z, and make a nonperturbative contribution to the partition function Z. In three di-
mensions, these monopoles are instantons. Polyakov showed that a gas of such three-dimensional
monopoles gives rise to nonperturbative confinement in three dimensions, even though the theory
appears to be in a Higgs phase perturbatively [5].

In the model at hand, both A4 and φ play roles in the monopole solutions. The solutions for
all these monopoles can be found explicitly in the BPS limit; when A4 is nontrivial, the N−1 BPS
monopoles are joined by a Kaluza-Klein (KK) monopole [6, 7, 8]. Their actions are [2]

SBPS =
4π

g2

√
4θ 2 +g2L2v2 (4.1)

for BPS monopoles and

SKK =
4π

g2

√
(2π−2θ)2 +g2L2v2 (4.2)

for KK monopoles. The KK solution is topologically distinct from the BPS solution because it
carries instanton number 1. KK monopoles also have the opposite monopole charge from BPS
monopoles. This is consistent with the KvBLL decomposition of instantons in the pure gauge
theory with non-trivial Polyakov loop behavior, where SU(2) instantons can be decomposed into
a BPS monopole and a KK monopole. Our picture of the confined and mixed confined phases
is one where instantons and anti-instantons have “melted” into their constituent monopoles and
anti-monopoles, which effectively form a three-dimensional gas of magnetic monopoles.

4.2 Abelian duality

The contribution to the partition function of a single monopole is

Za = ξa exp [−Sa]
∫

d3x (4.3)

where a denotes the type of monopoles, a =
{

BPS,KK,BPS,KK
}

and the factor of d3x represents
the integration over the location of the monopole. The factor ξa together with exp[−Sa] is called
the fugacity, and the one-loop contribution for the case of an adjoint scalar gives [9, 10, 2]

ξa = cµ
7/2 (2L)1/2 S2

a (4.4)

where µ is a Pauli-Villars regulator and c is a numerical constant. From the construction of the KK
monopole, we have ξKK (θ) = ξBPS (π−θ). The interaction of the monopoles is essentially the one
described by Polyakov in his original treatment of the Georgi-Glashow model in three dimensions
[5], slightly generalized to include both the BPS and KK monopoles. The generating functional in
terms of a scalar field σ

Zσ =
∫

[dσ ]exp
[
−
∫

d3x
(

g2

32π2L
(∂ jσ)2−∑

a
ξae−Sa+iqaσ

)]
(4.5)

is precisely equivalent to the generating function of the monopole gas. Note that each species of
monopole has its own magnetic charge sign qa =± as well as its own action Sa. This equivalence is

5
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a generalization of the equivalence of a sine-Gordon model to a Coulomb gas, and may be proved
by expanding Zσ in a power series in the ξa’s, and doing the functional integral over σ for each
term of the expansion.

It is well known that the magnetic monopole plasma leads to confinement in three dimensions.
For our effective three-dimensional theory, any Wilson loop in a hyperplane of fixed x4, for example
a Wilson loop in the x1−x2 plane, will show an area law. It can be obtained from the kink solution
connecting the two vacua of the dual field σ [10]. We write the potential term in the dual effective
lagrangian as

−∑
a

ξae−Sa+iqaσ → 2
(

ξBPS (θ)e−SBPS(θ) +ξKK (θ)e−SKK(θ)
)

[1− cos(σ)] (4.6)

which has minima at σ = 0 and σ = 2π; we have added a constant for convenience such that
the potential is positive everywhere and zero at the minima. A one-dimensional soliton solution
σs (z) connects the two vacua, and the string tension σ3d for Wilson loops in the three noncompact
directions is given by

σ3d =
∫ +∞

−∞

dzLe f f (σz(z)) (4.7)

which can be calculated via yet another Bogomol’nyi inequality to be

σ3d =
4g
π

√
1

2L

(
ξBPS (θ)e−SBPS(θ) +ξKK (θ)e−SKK(θ)

)
. (4.8)

The apparent renormalization group-dependence of the final result is discussed in [2]. It is notable
that in the confined phase σ3d can be written in a form independent of the renormalization group
scale [10].

In Figure 3, we show a final version of the phase diagram. The figure shows the large region
where the dilute monopole gas description should be valid, and either SBPS = SKK or SBPS ' SKK .
Note that this region includes all of the confined and mixed confined regions, a large part of the
Higgs phase, and a small part of the deconfined phase. The region where the dilute gas approxima-
tion is valid is somewhat larger. However, we have also indicated the region where the dilute gas
approximation breaks down, because SBPS ≈ 0 and SKK ≈ 8π2/g2. For obvious reasons, we have
labeled this region as an instanton region, although the correct treatment of topological excitations
in this region is no clearer in the Higgs system than in the pure gauge case.

4.3 Poisson duality

We can understand the role of topological excitations from a different point of view by invok-
ing duality in a form similar to that used by Poppitz and Unsal in their analysis of the Seiberg-
Witten model [11]; their work also serves as an introduction to duality in this context. We begin
with an easy variant of the Poisson summation formula associated with Z(N)C. Let f (θ) be a
function defined on the interval −π < θ < π . We define the Fourier series in the usual way:

f (θ) = ∑
n∈Z

f̃ (n)einθ (4.9)

f̃ (n) =
∫

π

−π

dθ

2π
f (θ)e−inθ . (4.10)

6
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Then we have

N−1

∑
k=0

f
(

θ − 2πk
N

)
= ∑

n∈Z
N f̃ (nN)einNθ (4.11)

so that for N = 2 only the even coefficients f̃ (2n) contribute. Let us apply this identity to the
combination

ξBPS (θ)e−SBPS(θ) +ξKK (θ)e−SKK(θ) = ξBPS (θ)e−SBPS(θ) +ξBPS (π−θ)e−SBPS(π−θ) (4.12)

which occurs in the dual Lagrangian and in the formula for σ3d so we have

f (θ) = ξBPS (θ)e−SBPS(θ). (4.13)

For small g2, SBPS (θ) is strongly peaked at θ = 0, so we can make the approximation

f̃ (n) '
∫

∞

−∞

dθ

2π
ξBPS (0)e−SBPS(θ)einθ . (4.14)

Although this integral, with the limits taken to infinity, can be evaluated in a saddle point approxi-
mation, it can also be evaluated exactly [11], giving

f̃ (2n)' ξBPS (0)
gLv
2π
·

4π

g2√(
4π

g2

)2
+n2

K1

gLv

√(
4π

g2

)2

+n2

 . (4.15)

The Higgs phase represents the most general domain of applicability of the duality transfor-
mation, because in the Higgs phase v 6= 0 and 0 ≤ θ < π/2. It is natural to introduce M(n) the
mass of a Minkowski-space Julia-Zee dyon [12] of magnetic charge 4π/g and electric charge ng

M (n) = v

√(
4π

g

)2

+(ng)2. (4.16)

The asymptotic expansion of the Bessel function for large argument gives a factor of exp [−LM(n)]:

f̃ (2n)' ξBPS (0)
LM(0)

2π
· 1√(

4π

g2

)2
+n2

√
π

2LM(n)
exp [−LM(n)] . (4.17)

Thus each term in the sum carries a factor of exp [−LM(n)+ i2nθ ]. This suggests an obvious
interpretation of the finite sum over BPS and KK monopoles, which are constituents of instantons,
as being equivalent to a gas of Julia-Zee dyons, each carrying a Polyakov loop factor appropriate
to its charge. This interpretation is valid throughout most of the Higgs and mixed confined phases,
except in the region near m2 = 0 where the mass of the lightest dyon M(0) = 4πv/g, which is a
Minkowski-space monopole, becomes light. Within this framework, the only significant difference
between the mixed confined and Higgs phases is that in the mixed confined phase, θ is restricted
to π/2.
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5. Conclusions

We have shown that the deformed SU(2) adjoint Higgs model on R3×S1 have four different
phases distinguished by the behavior of the three gauge-invariant order parameters associated with
Z(2)C×Z(2)H . We have calculated the area-law behavior of Wilson loops orthogonal to the com-
pact S1 direction in at least part of all four phases where a picture of a dilute magnetic monopole gas
is valid. Furthermore, we show that the monopole gas picture, arrived at using Euclidean instanton
methods, can be interpreted as a gas of finite-energy dyons using Poisson duality.

For SU(N) gauge theories on R3× S1, the natural set of order parameters is TrFPk, and the
Z(N) center symmetry can break to a subgroup Z(p) [13, 14]. With the addition of an adjoint scalar,
there is the additional set of order parameters of the form form TrFPkφ available. This suggests a
very rich phase structure is possible. Finally, the overall phase structure we have predicted in our
four-dimensional model should be relatively easy to test with lattice simulations.
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