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In this talk, we examine the physical unitarity in a massive Yang-Mills theory without the Higgs

field in which the color gauge symmetry is not spontaneously broken and kept intact. For this

purpose, we use a new framework proposed one of the authors based on a nonperturbative con-

struction of a non-Abelian field describing a massive spin-one vector boson field, which enables

us to perform the perturbative and nonperturbative studies on the physical unitarity. Moreover,

we present a new perturbative treatment for the physical unitarity after giving the general proper-

ties of the massive Yang-Mills theory. Then we reproduce the violation of physical unitarity in a

transparent way. This work is a preliminary work to the subsequent works in which we present

a nonperturbative framework to propose a possible scenario of restoring the physical unitarity in

the Curci-Ferrari model. We discuss the implications for the low-energy QCD in relation to color

confinement, glueball mass and BRST-invariant dimension-two condensate.
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1. Introduction

In this talk we reconsider [1, 2] a massive Yang-Mills theory [3] without the Higgs field [4].
A motivation of this research stems from some nonperturbative phenomena caused by strong inter-
actions.

(i) Confinement and Green functions— The deep infrared behaviors of the gluon and ghost
Green functions are believed to be intimately connected to color confinement in QCD [5, 6].
In the Landau gauge, the decoupling solution [7, 8, 9] for the gluon and ghost propagators is
currently supported rather than the scaling solution [10] by recent numerical simulations on
large lattices in three and four spacetime dimensions [11]. Quite recently, it has been shown
[12] that the decoupling solution for the gluon and ghost propagators can be well reproduced
from a low-energy effective model of a massive Yang-Mills theory, which is a special case
of the Curci-Ferrari (CF) model [13]. This feature is not restricted to the Landau gauge and
is common to manifestly Lorentz covariant gauges, e.g., the maximal Abelian gauge [14],
as pointed out and demonstrated in [15]. We can ask how color confinement in QCD is
understood from the CF model.

(ii) Glueball mass spectrum— A glueball should be constructed from the fundamental degrees
of freedom of QCD, i.e., quark, gluon and ghost. For instance, the potential model of [16]
identifies glueballs with bound states of massive gluons. They are described simply by intro-
ducing a naive mass term for gluons,1

2M2Aµ ·A µ , which however breaks the Becchi-Rouet-
Stora-Tyutin (BRST) symmetry. We ask how we can introduce a BRST-invariant mass term
for gluons to establish a firm field theoretical foundation for treating glueballs, which will
enable us to answer how precisely the mass and spin of the resulting glueballs are related to
those of the constituent gluons.

(iii) Vacuum condensates— Besides gauge-invariant vacuum condensates represented by⟨ψ̄ψ⟩
with mass dimension-three and⟨F 2

µν⟩ with mass dimension four, which are very impor-
tant to characterize the nonperturbative vacuum of QCD, there might exist an extra dimen-
sion two condensate. In fact, such a lower dimensional vacuum condensate is needed from
the phenomenological point of view. However, such a condensate cannot be constructed
from gauge-invariant local composite operators in the framework of the local field theory. A
BRST-invariant vacuum condensate of mass dimension two has been constructed in [17, 18].
However, it is just on-shell BRST invariant. Can we construct an off-shell BRST invariant
version of vacuum condensate of mass dimension two?

Another motivation of studying the CF model comes from the field theoretical interest, since
the massive Yang-Mills theory without the Higgs field has an unsatisfactory aspect as a quantum
field theory. Renormalizability [19, 20] is an important criterion for a quantum field theory to be
a calculable and predictable theory. In addition, physical unitarity [19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30] is another important criterion for a quantum theory of gauge fields to be a meaning
theory, which prevents unphysical particles from being observed.

In view of this, we remind the readers of the well-known facts:

2



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
5
6

Physical unitarity of a massive Yang-Mills theory without the Higgs field Kei-Ichi Kondo

(i) The massless Yang-Mills theory satisfies both renormalizability and physical unitarity [19,
21].

(ii) The massive Yang-Mills theory in which local gauge invariance is spontaneously broken by
the Higgs field and the gauge field acquires the mass through the Higgs mechanism satisfies
both renormalizability and physical unitarity [20].

In fact, the unified theory of Glashow-Weinberg-Salam for the electromagnetic and weak inter-
actions based on the spontaneous symmetry breaking:SU(2)L ×U(1)Y → U(1)EM predicted the
massive gauge bosonsW+,W−, andZ0 which have been discovered in the mid-1980s, and the
remaining Higgs particle is about to be discovered.

However, in all the models proposed so far as the massive Yang-Mills theory without the Higgs
fields (in which the local gauge symmetry is not spontaneously broken), it seems that renormal-
izability and physical unitarity are not compatible with each other. See [29, 30] for reviews and
[31] for later developments. Indeed, the CF model has been shown to be renormalizable [25, 27],
whereas the CF model does not seem to satisfy physical unitarity according to [25, 26, 27]. Al-
though the CF model is not invariant under the usual BRST transformation, it can be made invariant
by modifying the BRST transformation. But, the modified BRST transformation is not nilpotent.

It is known that nilpotency is the key property to show physical unitarity in the usual massless
Yang-Mills theory, since the unphysical states form the BRST quartets and the cancellations occur
among the quartets (Kugo-Ojima quartet mechanism) [5, 21]. It is not so clear if nilpotency is
necessary to recover physical unitarity in the massive case. The physical unitarity of the CF model
will be discussed in the perturbative and a nonperturbative framework in forthcoming papers [1].

2. The Curci-Ferrari model and the modified BRST transformation

In order to look for a candidate of the massive Yang-Mills theory without the Higgs field, we
start from the usual massless Yang-Mills theory in the most general Lorentz gauge formulated in
a manifestly Lorentz covariant way. The total Lagrangian density is written in terms of the Yang-
Mills field Aµ , the FP ghost fieldC , the antighost fieldC̄ and the NL fieldN . As a candidate of
the massive Yang-Mills theory without the Higgs field, we add the “mass term”Lm:

L tot
mYM =LYM +LGF+FP+Lm, (2.1a)

LYM =− 1
4
Fµν ·F µν , (2.1b)

LGF+FP=
α
2

N ·N +
β
2

N ·N +N ·∂ µAµ −
β
2

gN · (iC̄ ×C )

+ iC̄ ·∂ µDµ [A ]C +
β
4

g2(iC̄ ×C ) · (iC̄ ×C )

=N ·∂ µAµ + iC̄ ·∂ µDµ [A ]C +
β
4
( ¯N · ¯N +N ·N )+

α
2

N ·N , (2.1c)

Lm =
1
2

M2Aµ ·A µ +βM2iC̄ ·C , (2.1d)
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whereα andβ are parameters corresponding to the gauge-fixing parameters in theM → 0 limit,
Dµ [A ]C (x) := ∂µC (x)+gA (x)×C (x), and

¯N :=−N +giC̄ ×C . (2.2)

The α = 0 case is the CF model with the coupling constantg, the mass parameterM and
the parameterβ . In the Abelian limit with vanishing structure constantsf ABC = 0, the FP ghosts
decouple and the CF model reduces to the Nakanishi model [32].

In what follows, we restrict our considerations to theα = 0 case. In theα = 0 case,LYM +

LGF+FP is constructed so as to be invariant under both the usual BRST transformation and anti-
BRST transformation:

δδδAµ(x) = Dµ [A ]C (x)

δδδC (x) =−g
2C (x)×C (x)

δδδ C̄ (x) = iN (x)

δδδN (x) = 0

,


δ̄δδAµ(x) = Dµ [A ]C̄ (x)

δ̄δδ C̄ (x) =−g
2C̄ (x)× C̄ (x)

δ̄δδC (x) = i ¯N (x)

δ̄δδ ¯N (x) = 0

. (2.3)

Indeed, it is checked that

δδδLYM = 0, δδδLGF+FP= 0, δ̄δδLYM = 0, δ̄δδLGF+FP= 0. (2.4)

This is not the case for the mass termLm, i.e.,

δδδLm ̸= 0. (2.5)

Even in the presence of the mass termLm, however, the total LagrangianL tot
mYM can be made

invariant by modifying the BRST transformation [13]: δ ′
BRST= λδδδ ′ with a Grassmannian number

λ and 
δδδ ′Aµ(x) = Dµ [A ]C (x)

δδδ ′C (x) =−g
2C (x)×C (x)

δδδ ′C̄ (x) = iN (x)

δδδ ′N (x) = M2C (x)

. (2.6)

The modified BRST transformation deforms the BRST transformation of the NL field and reduces
to the usual BRST transformation in the limitM → 0. It should be remarked thatδδδ ′L tot

mYM = 0
follows from

0= δδδ ′(LGF+FP+Lm), (2.7)

while
δδδ ′Lm ̸= 0, δδδ ′LGF+FP ̸= 0. (2.8)

Similarly, the total action is invariant under a modified anti-BRST transformationδ̄δδ ′
defined

by 
δ̄δδ ′

Aµ(x) = Dµ [A ]C̄ (x)

δ̄δδ ′
C̄ (x) =−g

2C̄ (x)× C̄ (x)

δ̄δδ ′
C (x) = i ¯N (x)

δ̄δδ ′ ¯N (x) =−M2C̄ (x)

, (2.9)
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which reduces to the usual anti-BRST transformation in the limitM → 0. It is sometimes useful to
give another form:

δδδ ′ ¯N (x) = g ¯N (x)×C (x)−M2C (x), δ̄δδ ′
N (x) = gN (x)× C̄ (x)+M2C̄ (x). (2.10)

Moreover, the path-integral integration measureDA DC DC̄ DN is invariant under the mod-
ified BRST transformation. Indeed, it has been shown in [1] that the Jacobian associated to the
change of integration variablesΦ(x) → Φ′(x) = Φ(x) + λδδδ ′Φ(x) for the integration measure is
equal to one.

However, the modified BRST transformation violates the nilpotency whenM ̸= 0:
δδδ ′δδδ ′Aµ(x) = 0,

δδδ ′δδδ ′C (x) = 0,

δδδ ′δδδ ′C̄ (x) = iδδδ ′N (x) = iM2C (x) ̸= 0,

δδδ ′δδδ ′N (x) = M2δδδ ′C (x) =−M2 g
2C (x)×C (x) ̸= 0.

(2.11)

The nilpotency is violated also for the modified anti-BRST transformation whenM ̸= 0: In the
limit M → 0, the modified BRST and anti-BRST transformations reduce to the usual BRST and
anti-BRST transformations and become nilpotent.

3. Defining a massive Yang-Mills field

We require the following properties to construct a non-Abelian massive spin-one vector boson
field Kµ(x) in a nonperturbative way:

(i) Kµ has the modified BRST invariance (off mass shell):

δδδ ′Kµ = 0. (3.1)

(ii) Kµ is divergenceless (on mass shell):

∂ µKµ = 0. (3.2)

(iii) Kµ obeys the adjoint transformation under the color rotation:

Kµ(x)→UKµ(x)U
−1, U = exp[iεAQA], (3.3)

which has the infinitesimal version:

δKµ(x) = ε ×Kµ(x). (3.4)

The fieldKµ is identified with the non-Abelian version of the physical massive vector field with
spin one, as ensured by the above properties. Here (i) guarantees thatKµ belong to the physical
field creating a physical state with positive norm. (ii) guarantees thatKµ have the correct degrees
of freedom as a massive spin-one particle, i.e., three in the four-dimensional spacetime, i.e., two
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transverse and one longitudinal modes, excluding one scalar mode. (iii) guarantees thatKµ obey
the same transformation rule as that of the original gauge fieldAµ

We observe that the total Lagrangian of the CF model is invariant under the (infinitesimal)
global gauge transformationor color rotation defined by

δΦ(x) := [εCiQC,Φ(x)] = ε ×Φ(x), for Φ = Aµ ,N ,C , C̄ , (3.5)

δϕ(x) := [εCiQC,ϕ(x)] =−iεϕ(x), (3.6)

whereϕ is a matter field. The conserved Noether chargeQA :=
∫

d3xJ 0,A
color obtained from the

color currentJ 0
color is called thecolor chargeand is equal to the generator of the color rotation.

It has been shown [1] that such a fieldKµ is obtained by a nonlinear but local transformation
from the original fieldsAµ , C , C̄ andN of the CF model:

Kµ :=Aµ −M−2∂µN −gM−2Aµ ×N

+gM−2∂µC × iC̄ +g2M−2(Aµ ×C )× iC̄ . (3.7)

In the Abelian limit or the lowest order ofg, Kµ reduces to the Proca field for massive vector:

Kµ → Aµ −
1

M2 ∂µN :=Uµ . (3.8)

It should be remarked thatUµ is invariant under the Abelian version of the modified BRST, but it
is not invariant under the non-Abelian modified BRST transformation.

The new fieldKµ is converted to a simple form:

Kµ(x) = Aµ(x)+
1

M2 iδδδ ′δ̄δδ ′
Aµ(x). (3.9)

It has been explicitly shown in [1] that the fieldKµ defined by (3.7) or (3.9) satisfies all the above
properties. The fieldKµ plays the role of the non-Abelian massive vector field and is identified with
a non-Abelian version of the spin-one massive vector field. Equation (3.7) gives a transformation
from Aµ ,N ,C andC̄ to Kµ .

As an application of the above result, we can construct a mass term which is invariant simul-
taneously under the modified BRST transformation, Lorentz transformation and color rotation:

1
2

M2Kµ(x) ·K µ(x). (3.10)

This can be useful as a regularization scheme for avoiding infrared divergences in non-Abelian
gauge theories. Moreover, we can obtain a dimension-two condensate which is modified BRST
invariant, Lorentz invariant, and color-singlet:

⟨Kµ(x) ·K µ(x)⟩. (3.11)

This dimension-two condensate is off-shell (modified) BRST invariant and should be compared
with the dimension-two condensate proposed in [17, 18] which is only on-shell BRST invariant:⟨1

2
Aµ(x) ·A µ(x)+βC (x) · C̄ (x)

⟩
. (3.12)
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4. Perturbative violation of physical unitarity

In [2] , we have checked in a new perturbative treatment whether or not the CF model satisfies
the physical unitarity. Then we have confirmed the violation of the physical unitarity in the per-
turbative treatment and we have clarified the reason in the massive Yang-Mills theory without the
Higgs field. The perturbative analysis for the physical unitarity imposes a restriction on the valid
energy together with the parameter of the CF model:E2 < 4βM2 in order to confine unphysical
modes (ghost, antighost, scalar mode). However,β = 0 is not allowed in this scenario.

It should be remarked that even the modified BRST (and anti-BRST) invariant quantity de-
pends on a parameterβ in theM ̸= 0 case. This should be compared with theM = 0 case, in which
β is a gauge-fixing parameter and the BRST-invariant quantity does not depend onβ , which means
that the physics does not depend onβ in theM = 0 case. This is not the case forM ̸= 0 [33].

5. Possible nonperturbative restoration of physical unitarity

The conclusion obtained in this work still leaves a possibility that the nonperturbative approach
can modify the conclusion. In a subsequent paper, indeed, we will propose a scenario in which
the physical unitarity can be recovered in the CF model thanks to the FP conjugation invariance.
Indeed, we will show that the norm cancellation is automatically guaranteed from the Slavnov-
Taylor identities if the ghost-antighost bound state exists. In this way, the physical unitarity can
be recovered in a nonperturbative way. To show the existence of the bound state of ghost and
antighost, the Nambu-Bethe-Salpeter equation is to be solved. This is a hard work to be tackled in
subsequent papers.

Acknowledgements: This work is supported by Grant-in-Aid for Scientific Research (C) 24540252
from the Japan Society for the Promotion of Science (JSPS).
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