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We develop a manifestly gauge-covariant expansion and projection using the eigen-mode of the

QCD Dirac operator /D = γµDµ . Applying this method to the Wilson loop and the Polyakov loop,

we perform a direct analysis of the correlation between confinement and chiral symmetry breaking

in SU(3) lattice QCD calculation on 64 at β=5.6 at the quenched level. Notably, the Wilson

loop is found to obey the area law, and the slope parameter corresponding to the string tension

or the confinement force is almost unchanged, even after removing the low-lying Dirac modes,

which are responsible to chiral symmetry breaking. We find also that the Polyakov loop remains

to be almost zero even without the low-lying Dirac modes, which indicates theZ3-unbroken

confinement phase. These results indicate that one-to-one correspondence does not hold between

confinement and chiral symmetry breaking in QCD.
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1. Introduction: relation between confinement and chiral symmetry breaking

Quantum chromodynamics (QCD) exhibits interesting nonperturbative phenomena such as
color confinement and chiral symmetry breaking [1] in the low-energy region. In particular, it is an
important issue to investigate the correlation between confinement and chiral symmetry breaking
[2, 3, 4]. However, their relation is not yet clarified directly from QCD, although the strong cor-
relation between them has been suggested by the simultaneous phase transitions of deconfinement
and chiral restoration in lattice QCD both at finite temperature [5] and in a small-volume box [5].

The close relation between confinement and chiral symmetry breaking has been also suggested
in terms of the monopole degrees of freedom [2, 3], which topologically appears in QCD by taking
the maximally Abelian gauge [6, 7, 8]. For example, by removing the monopoles, confinement and
chiral symmetry breaking are simultaneously lost in lattice QCD [3], as schematically shown in
Fig.1. This indicates an important role of the monopole to both confinement and chiral symmetry
breaking, and these two nonperturbative QCD phenomena seem to be related via the monopole.

QCD� QCD in  

MA gauge�

MA  gauge fixing�

Monopole  

projection�

Photon  

projection�

Monopole part�

Photon part�

Monopole current�

Only with monopole,  

Confinement , 

Chiral Sym Breaking, 

Instanton are reproduced�

After removing monopole,  

No Confinement,  

No Chiral Breaking, 

No Instanton�

Hodge 
decomposition�

Figure 1: An illustration of the relevant role of monopoles to nonperturbative QCD. In the maximally
Abelian gauge, QCD becomes Abelian-like due to the large off-diagonal gluon mass of about 1GeV [9],
and there appears a global network of the monopole current [7, 8]. By the Hodge decomposition, the QCD
system can be divided into the monopole part and the photon part. The monopole part has confinement [8],
chiral symmetry breaking [3] and instantons [10], while the photon part does not have all of them.

However, as a possibility, removing the monopoles may be “too fatal” for most nonperturbative
properties. If this is the case, nonperturbative QCD phenomena are simultaneously lost by their cut.

In fact, if only the relevant ingredient of chiral symmetry breaking is carefully removed, how
will be confinement?To get the answer, we perform a direct investigation between confinement
and chiral symmetry breaking, using the Dirac-mode expansion and projection [11].

2. Gauge-invariant formalism of Dirac-mode expansion and projection

In this paper, we develop a manifestly gauge-covariant expansion/projection of QCD operators
such as the Wilson loop and the Polyakov loop, using the eigen-mode of the QCD Dirac operator
/D = γµDµ , and investigate the relation between confinement and chiral symmetry breaking [11].

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
2
1
7

Dirac-mode expansion for confinement and chiral symmetry breaking Hideo Suganuma

2.1 Eigen-mode of Dirac operator in lattice QCD

In lattice QCD with spacinga, the Dirac operator /D = γµDµ is expressed withUµ(x) as

/Dx,y ≡
1
2a

4

∑
µ=1

γµ
[
Uµ(x)δx+µ̂ ,y−U−µ(x)δx−µ̂,y

]
, (2.1)

with U−µ(x)≡U†
µ(x− µ̂). Adopting hermitianγ-matricesγ†

µ = γµ , /D is anti-hermitian and satisfies
/D†

y,x =− /Dx,y. The normalized eigen-state|n⟩ of the Dirac operator /D is introduced as

/D|n⟩= iλn|n⟩ (2.2)

with λn ∈ R. Because of{γ5, /D}= 0, the stateγ5|n⟩ is also an eigen-state of /D with the eigenvalue
−iλn. The Dirac eigenfunctionψn(x) ≡ ⟨x|n⟩ obeys /Dψn(x) = iλnψn(x), and its explicit form of
the eigenvalue equation in lattice QCD is

1
2a

4

∑
µ=1

γµ [Uµ(x)ψn(x+ µ̂)−U−µ(x)ψn(x− µ̂)] = iλnψn(x). (2.3)

The Dirac eigenfunctionψn(x) can be numerically obtained in lattice QCD, besides a phase factor.
According toUµ(x)→V(x)Uµ(x)V†(x+ µ̂), the gauge transformation ofψn(x) is found to be

ψn(x)→V(x)ψn(x), (2.4)

which is the same as that of the quark field. To be strict, for the Dirac eigenfunction, there can
appear an irrelevantn-dependent global phase factor aseiϕn[V], according to the arbitrariness of the
definition ofψn(x).

From the Banks-Casher relation [12], the quark condensate⟨q̄q⟩, the order parameter of chiral
symmetry breaking, is given by the zero-eigenvalue densityρ(0) of the Dirac operator /D:

⟨q̄q⟩=− lim
m→0

lim
V→∞

πρ(0), (2.5)

where the spectral densityρ(λ ) is given byρ(λ ) ≡ 1
V ∑n⟨δ (λ −λn)⟩ with space-time volumeV.

Thus, the low-lying Dirac modes can be regarded as the essential modes responsible to spontaneous
chiral-symmetry breaking in QCD.

2.2 Operator formalism in lattice QCD

The recent analysis of QCD with the Fourier expansion of the gluon field quantitatively reveals
that quark confinement originates from low-momentum gluons below about 1GeV in both Landau
and Coulomb gauges [13]. This method seems powerful but accompanies some gauge dependence.
To keep the gauge symmetry manifestly, we take the “operator formalism” in lattice QCD [11].

We define the link-variable operatorÛµ by the matrix element of

⟨x|Ûµ |y⟩=Uµ(x)δx+µ̂,y. (2.6)

The Wilson-loop operator̂W is defined as the product of̂Uµ along a rectangular loop,

Ŵ ≡
N

∏
k=1

Ûµk = Ûµ1Ûµ2 · · ·ÛµN . (2.7)
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For arbitrary loops, one finds∑N
k=1 µ̂k = 0. We note that the functional trace of the Wilson-loop

operatorŴ is proportional to the ordinary vacuum expectation value⟨W⟩ of the Wilson loop:

Tr Ŵ = tr∑
x
⟨x|Ŵ|x⟩= tr∑

x
⟨x|Ûµ1Ûµ2 · · ·ÛµN |x⟩

= tr ∑
x1,x2,···,xN

⟨x1|Ûµ1|x2⟩⟨x2|Ûµ2|x3⟩⟨x3|Ûµ3|x4⟩ · · · ⟨xN|ÛµN |x1⟩

= tr∑
x
⟨x|Ûµ1|x+ µ̂1⟩⟨x+ µ̂1|Ûµ2|x+

2

∑
k=1

µ̂k⟩ · · · ⟨x+
N−1

∑
k=1

µ̂k|ÛµN |x⟩

= ∑
x

tr{Uµ1(x)Uµ2(x+ µ̂1)Uµ3(x+
2

∑
k=1

µ̂k) · · ·UµN(x+
N−1

∑
k=1

µ̂k)}= ⟨W⟩ ·Tr 1. (2.8)

Here, “Tr” denotes the functional trace, and “tr” the trace over SU(3) color index.

The Dirac-mode matrix element of the link-variable operatorÛµ can be expressed withψn(x):

⟨m|Û |n⟩= ∑
x
⟨m|x⟩⟨x|Ûµ |x+ µ̂⟩⟨x+ µ̂|n⟩= ∑

x
ψ†

m(x)Uµ(x)ψn(x+ µ̂). (2.9)

Although the total number of the matrix element is very huge, the matrix element is calculable and
gauge invariant, apart from an irrelevant phase factor. Using the gauge transformation (2.4), we
find the gauge transformation of the matrix element as [11]

⟨m|Ûµ |n⟩ = ∑
x

ψ†
m(x)Uµ(x)ψn(x+ µ̂)

→ ∑
x

ψ†
m(x)V

†(x) ·V(x)Uµ(x)V
†(x+ µ̂) ·V(x+ µ̂)ψn(x+ µ̂)

= ∑
x

ψ†
m(x)Uµ(x)ψn(x+ µ̂) = ⟨m|Ûµ |n⟩. (2.10)

To be strict, there appears ann-dependent global phase factor, corresponding to the arbitrariness of
the phase in the basis|n⟩. However, this phase factor cancels ase−iϕneiϕn = 1 between|n⟩ and⟨n|,
and does not appear for QCD physical quantities including the Wilson loop.

2.3 Dirac-mode expansion and projection

From the completeness of the Dirac-mode basis,∑n |n⟩⟨n| = 1, arbitrary operator̂O can be
expanded in terms of the Dirac-mode basis|n⟩ as

Ô= ∑
n

∑
m
|n⟩⟨n|Ô|m⟩⟨m|, (2.11)

which is the theoretical basis of the Dirac-mode expansion [11]. Note here that this procedure is
just the insertion of unity, and is of course mathematically correct.

Based on this relation, the Dirac-mode expansion and projection can be defined. We define the
projection operator̂P which restricts the Dirac-mode space,

P̂≡ ∑
n∈A

|n⟩⟨n|, (2.12)
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whereA denotes arbitrary set of Dirac modes. InP̂, the arbitrary phase cancels between|n⟩ and⟨n|.
One findsP̂2 = P̂ andP̂† = P̂. The typical projections are IR-cut and UV-cut of the Dirac modes:

P̂ IR ≡ ∑
|λn|≥ΛIR

|n⟩⟨n|, P̂UV ≡ ∑
|λn|≤ΛUV

|n⟩⟨n|. (2.13)

Using the projection operator̂P, we define the Dirac-mode projected link-variable operator,

ÛP
µ ≡ P̂Ûµ P̂= ∑

m∈A
∑
n∈A

|m⟩⟨m|Ûµ |n⟩⟨n|. (2.14)

During this projection, there appears some nonlocality in general, but it would not be important
for the argument of large-distance properties such as confinement. From the Wilson-loop operator
Ŵ ≡ ∏N

k=1Ûµk, we define the Dirac-mode projected Wilson-loop operatorŴP ≡ ∏N
k=1ÛP

µk
, and

rewrite its functional trace in terms of the Dirac basis as [11]

Tr ŴP = Tr
N

∏
k=1

ÛP
µk
= Tr ÛP

µ1
ÛP

µ2
· · ·ÛP

µN
= Tr P̂Ûµ1P̂Ûµ2P̂· · · P̂ÛµNP̂

= tr ∑
n1,n2,···,nN∈A

⟨n1|Ûµ1|n2⟩⟨n2|Ûµ2|n3⟩ · · · ⟨nN|ÛµN |n1⟩, (2.15)

which is manifestly gauge invariant. Here, the arbitrary phase factor cancels between|nk⟩ and⟨nk|.
Its gauge invariance is also numerically checked in the lattice QCD Monte Carlo calculation.

From TrŴP(R,T) on theR×T rectangular loop, we define Dirac-mode projected potential,

VP(R)≡− lim
T→∞

1
T

ln{Tr ŴP(R,T)}. (2.16)

On a periodic lattice ofV = L3×Nt , we define the Dirac-mode projected Polyakov loop [11]:

⟨Lproj.
P ⟩ ≡ 1

3V
Tr

Nt

∏
i=1

ÛP
4 =

1
3V

Tr (ÛP
4 )

Nt =
1

3V
tr ∑

n1,..,nNt∈A

⟨n1|Û4|n2⟩⟨n2|Û4|n3⟩ · · · ⟨nNt |Û4|n1⟩, (2.17)

which is also manifestly gauge-invariant.

3. Analysis of confinement in terms of Dirac modes in QCD

In this paper, we mainly consider the removal of low-lying Dirac modes, i.e., the IR-cut case.
Using the Dirac-mode expansion and projection method, we calculate the IR-Dirac-mode-cut Wil-
son loop TrWP(R,T), the IR-cut inter-quark potentialVP(R), and the IR-Dirac-mode-cut Polyakov
loop⟨LP⟩IR in a gauge-invariant manner [11]. Here, we can directly investigate the relation between
chiral symmetry breaking and confinement as the area-law behavior of the Wilson loop, since the
low-lying Dirac modes are responsible to chiral symmetry breaking.

As a technical difficulty, we have to deal with huge dimensional matrices and their products.
Actually, the total matrix dimension of⟨m|Ûµ |n⟩ is (Dirac-mode number)2. On theL4 lattice, the
Dirac-mode number isL4×Nc× 4, which can be reduced to beL4×Nc, using the Kogut-Susskind
technique [5]. Even for the projected operator, where the Dirac-mode space is restricted, the matrix
is generally still huge. At present, we use a small-size lattice in the actual lattice QCD calculation.
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We use SU(3) lattice QCD with the standard plaquette action atβ = 5.6 (i.e.,a≃ 0.25fm) on
64 at the quenched level. The periodic boundary condition is imposed for the gauge field. We show
in Fig.2(a) the spectral densityρ(λ ) of the QCD Dirac operator /D. The chiral property of /D leads
to ρ(−λ ) = ρ(λ ). Figure 2(b) is the IR-cut Dirac spectral densityρIR(λ ) ≡ ρ(λ )θ(|λ | −ΛIR)

with the IR-cutoffΛIR = 0.5a−1 ≃ 0.4GeV. By removing the low-lying Dirac modes, the chiral
condensate is largely reduced as⟨q̄q⟩ΛIR/⟨q̄q⟩ ≃ 0.02 around the physical region ofmq ≃ 5MeV.
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Figure 2: (a) The Dirac spectral densityρ(λ ) in lattice QCD atβ=5.6 and 64. The volumeV is multiplied.
(b) The IR-cut Dirac spectral densityρIR(λ )≡ ρ(λ )θ(|λ |−ΛIR)with the IR-cutoffΛIR =0.5a−1≃0.4GeV.

Figure 3 shows the IR-Dirac-mode-cut Wilson loop⟨WP(R,T)⟩ ≡ TrŴP(R,T), the IR-cut
inter-quark potentialVP(R), and the IR-Dirac-mode-cut Polyakov loop⟨LP⟩IR, after the removal
of the low-lying Dirac modes. These Dirac-mode projected quantities are obtained in lattice QCD
with the IR-cut ofρIR(λ )≡ ρ(λ )θ(|λ |−ΛIR) with the IR-cutoffΛIR = 0.5a−1 ≃ 0.4GeV.

 0.01

 0.1

 1

 0  1  2  3  4  5  6

〈W
(R

,T
)〉

R×T[a2]

 0.5

 1

 1.5

 0  1  2  3

V
(R

)[
a-1

]

R[a]

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

Im
 〈
L

P
 〉

IR

Re 〈L
P

 〉IR

ΛIR = 0.5a
-1

Figure 3: The attice QCD results after the removal of low-lying Dirac modes [11], which givesρIR(λ ) ≡
ρ(λ )θ(|λ | −ΛIR) with the IR-cutoffΛIR = 0.5a−1 ≃ 0.4GeV. (a) The IR-cut Wilson loop TrWP(R,T)
(circle) after removing the IR Dirac modes, plotted againstR×T. The slope parameterσP is almost the
same as that of the original Wilson loop (square). (b) The IR-cut inter-quark potential (circle), which is
almost unchanged from the original one (square), apart from an irrelevant constant. (c) The scatter plot of
the IR-Dirac-mode-cut Polyakov loop⟨LP⟩IR: its zero-value indicatesZ3-unbroken confinement phase.

Remarkably, even after removing the coupling to the low-lying Dirac modes, which are re-
sponsible to chiral symmetry breaking, the IR-Dirac-mode-cut Wilson loop is found to obey the
area law as⟨WP(R,T)⟩ ∝ e−σPRT, and the slope parameterσP corresponding to the string tension
or the confinement force is almost unchanged asσP ≃ σ . Accordingly, as shown in Fig.3(b), the
IR-cut inter-quark potentialVP(R) is almost unchanged from the original one, apart from an irrel-
evant constant. Also from Fig.3(c), we find that the IR-Dirac-mode-cut Polyakov loop is almost
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zero, i.e.,⟨LP⟩IR ≃ 0, which indicatesZ3-unbroken confinement phase. In fact, quark confinement
is kept in the absence of the low-lying Dirac modes or the essence of chiral symmetry breaking
[11]. This result seems consistent with Gattringer’s formula [4] and Lang-Schrock’s result [14].

We also investigate the UV-cut of Dirac modes in lattice QCD, and find that the confining
force is almost unchanged by the UV-cut [11], which seems consistent with the lattice result of
Synatschke-Wipf-Langfeld [15]. Furthermore, we examine “intermediate-cut” of Dirac modes, and
obtain almost the same confining force [11]. Then, we conjecture that the “seed” of confinement is
distributed not only in low-lying Dirac modes but also in a wider region of the Dirac-mode space.

Our lattice QCD results suggest some independence between chiral symmetry breaking and
color confinement, which may lead to richer phase structure in QCD. For example, the phase tran-
sition point can be different between deconfinement and chiral restoration in the presence of strong
electro-magnetic fields, because of their nontrivial effect on chiral symmetry [16].
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