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1. The V-A correlator

We focus on the difference of flavorud vector (V) and axial vector (A) current-current 2-point
functions,Πµν

V/A, and theirJ = 0,1 scalar components,Π(J)
V/A, defined in Minkowski space by

Πµν
V/A(q

2) ≡ i
∫

d4xeiq·x〈0|T
(

Jµ
V/A(x)J

†ν
V/A(0)

)

|0〉

=
(

qµqν −q2gµν) Π(1)
V/A(Q

2) + qµqν Π(0)
V/A(Q

2) (1.1)

where, as usual,Q2 = −q2. In what follows, we denote∆Π(J) ≡ Π(J)
V −Π(J)

A . TheΠ(J)
V/A(Q

2), for

Q2 > 0, also determine the corresponding Euclidean 2-point functions
[

Πµν
V/A(Q

2)
]

Eucl
=

(

Q2δ µν −QµQν) Π(1)
V/A(Q

2) − QµQν Π(0)
V/A(Q

2) , (1.2)

making theΠ(J)
V/A(Q

2) accessible from lattice simulations.Π(0)
A andΠ(1)

A both have kinematic poles

at Q2 = 0 while theJ = 0+ 1 sum does not. Since, beyond NLO in the chiral expansion, the
pole residues involve at-present-unknown NNLO LECs, we focus on∆Π(Q2) ≡ Π(0+1)

V (Q2)−

Π(0+1)
A (Q2), which satisfies an unsubtracted dispersion relation with only physical singularities.

The corresponding spectral function,∆ρ(s), consists of aδ -function ats= m2
π and continuum be-

ginning at 4m2
π . The “continuum part”,∆Π(Q2), of ∆Π(Q2) results from removing theπ pole:

∆Π(Q2) = ∆Π(Q2) − 2 f 2
π/(Q

2+m2
π). Fors< m2

τ , ∆ρ(s) can be determined experimentally from
hadronicτ decay data [1]. Public versions are available from both ALEPH [2] and OPAL [3],
with a yet-to-be-corrected problem affecting the covariance matrix of the former. Beyonds= m2

τ ,
an alternate representation results from fitting a physically motivated model for duality violations
(DVs) [5] to integrated versions of the data [4]. The OPAL data and fitted DV model provide a dis-
persive determination of∆Π(Q2) at spacelikeQ2 > 0, where it can also be measured on the lattice.
The dispersive result is nominally quite precise, but has some (mild) model-dependence from the
use of the DV model. It also involvesτ → 4πντ contributions in theV channel whose uncertainties
may have been underestimated, given that the corresponding4π branching fractions differ from
expectations based on CVC and measurede+e− → 4π cross-sections by much more than is typical
for isospin-breaking corrections [6, 7]. The mildness of the model-dependence follows from the
fact that, in the rangeQ2 < (500MeV)2 expected to be of relevance to the determination of chiral
LECs, DV contributions to∆ρ(s) account for a few to several % of∆Π(Q2), the precise values de-
pending on the point in the spectrum at which one switches from data to the fitted DV model. The
cross-check on the lattice results for∆Π provided by the dispersive representation is also useful
in light of the freedom to varymu,d,s on the lattice, which, in principle, provides access to NNLO
chiral LECs currently unknown and/or difficult to extract reliably with continuum methods.

2. Lattice data for ∆Π(Q2)

∆Π(Q2) has been determined for the fine 1/a= 2.28 GeV,mπ = 289, 345 and 394 MeV, and
coarse 1/a= 1.37 GeV,mπ = 171 and 248 RBC/UKQCD DWF ensembles detailed in Refs. [8, 9].
The latter provide an increased number of low-Q2 points, improving the determination of the chiral
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LECs. The values offπ andmπ needed to convert∆Π(Q2) to ∆Π(Q2) are given in Refs. [8, 9].
The simulationms values are, in all cases, close, but not exactly equal to the physical value. As the
SU(2) LECs correspond to physicalms, we analyze the data in the chiralSU(3) framework. The
ensemblemK values required for this purpose are also given in Refs. [8, 9]. The spectral function,
∆ρ , of ∆Π, and hence also∆Π itself, areO(m0

ℓ) in the chiral expansion. We thus expect the lattice
∆Π(Q2) to approach the physical results for sufficiently lightmℓ. We find that, within errors, for
the low-Q2 region of interest to us here, the lattice∆Π(Q2) agree well with one another, and with
the continuum OPAL+DV model results, for all but themπ = 394 MeV case, as shown in Fig. 1.
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Figure 1: Lattice and OPAL+DV model results for∆Π(Q2)

3. The chiral LECs

At NLO in the chiral expansion,∆Π is controlled by the single NLO LECLr
10(µ). Two

previous lattice studies determinedLr
10(µ) by analyzing∆Π(1) [10, 11] at NLO. With the lattice

spacings available, the second-smallest non-zeroQ2 were found to be too large (∼ (650MeV)2 and
∼ (460MeV)2 for Refs. [10] and [11] respectively) to allow for a successful NLO fit. Final NLO
analysis results were thus based on the single lowestQ2 values,(320MeV)2 and∼ (230MeV)2, re-
spectively. The current analysis improves on the previous ones in a number of ways. First, the new
coarser lattices allows access to an increased number of low-Q2 points. Second, the statistics for
themπ = 289 MeV ensemble considered previously [11] have now been doubled. Third, because
the residue of theQ2 = 0 kinematic pole in∆Π(1) involves an unknown NNLO contribution, whose
contribution, relative to that of the term involving the NLOconstantLr

10, gets enhanced when one
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goes to the lowQ2 desirable for extracting LECs, we switch to analyzing∆Π rather than∆Π(1), the
π pole contribution which must be subtracted to obtain the former having both an exactly known
residue and being farther from the region of the lattice datathan is the kinematic pole in∆Π(1).
The NLO results forLr

10(µ), for µ = µ0 = 0.77 GeV, obtained for eachQ2 < 0.25 GeV2, and all
but the heaviestmπ = 394MeV ensemble, are shown in Fig. 2. Also shown for comparison are the
results of an NLO analysis of the OPAL+DV model over a similarrange ofQ2.

Since theQ2-dependence ofΠV(Q2) is known to be poorly reproduced by the NLO represen-
tation [12], one might be surprised by the relative stability of the results for differentQ2. However,
the missing intermediateρ contribution believed responsible for the NLOΠV slope problem [12] is
encoded in the NNLO LECCr

93 [13], and the contribution toΠV(Q2) proportional toCr
93 is exactly

cancelled by that proportional toCr
93 in the NNLO expression forΠ(0+1)

A (Q2). Nonetheless, the cen-
tral value for the average slope of∆Π(Q2) with respect toQ2 is significantly larger than expected
from the NLO expression, albeit at only the∼ 2σ level. The structure of the full NNLO result,
known from the results of Ref. [13], is very linear inQ2 for theQ2 considered here, so a significant
portion of the NNLO contribution is easily removed by fittingthe results of Fig. 2 to a linear form
and using this to extrapolate toQ2 = 0. The only NNLO contributions remaining to be removed
are then those entering∆Π(0). These involve two NNLO LEC combinations,Cr

61−Cr
12−Cr

80,
which is not large-Nc suppressed, andCr

62−Cr
13−Cr

81, which is [13, 14]. The first combination has
been estimated in Ref. [14] using the results of previous continuum works. The second is currently
unknown, and has only been loosely bounded, using rough large-Nc-suppression arguments [14].
The resulting NNLO LEC combination assessments were used inRef. [14] to obtain a continuum
extraction ofLr

10 andCr
87 (the NNLO LEC expected to dominate the slope of∆Π). The analysis

employed the ALEPH data and was based on two additional, not explicitly tested, assumptions,
namely (i) that the NNLO form will successfully represent∆Π(Q2) and (ii) that the V and A chan-
nel DV spectral contributions which, being governed by the resonance structure in the channel in
question, are expected to be channel-dependent, can be assumed to be approximately the same in
form and hence combined into a single DV ansatz for the V-A difference. While the latter assump-
tion is not borne out by the combined V and A channel fits of Refs. [4], the contribution to∆Π of
the DV part of∆ρ is small in the low-Q2 region. It is thus of interest to compare the results of our
fit to those of this mildly model-dependent continuum analysis, which are [14]

Lr
10(µ0) = −0.0041(4)NNLO; Cr

87(µ0) = 0.0049(2)NNLO GeV−2 , (3.1)

with the error dominated entirely by the uncertainty in the estimate for unknown large-Nc-suppressed
NNLO LEC combination. Results obtained using instead the OPAL data, and incorporating the re-
sults of the DV model fits of Refs. [4] in order to remove the second of the two assumptions noted
above, are in extremely close agreement. An additional unknown systematic error, associated with
the two additional assumptions noted above, of course also exists for the results of Eq. (3.1). Our
final goal is to perform a NNLO analysis of the lattice data, including a range ofmq sufficient to put
constraints on the currently unknown NNLO LECs (something likely to be feasible given the differ-
ence of the results for∆Π for mπ = 394MeV from those for the smallermπ seen in Fig. 1), but this
analysis has not yet been completed. The results of following the continuum estimates/arguments

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
5
6

Some continuum physics results from the lattice V-A correlator K. Maltman

of Ref. [14] for the unknown NNLO LEC combinations entering∆Π(0) are

Lr
10(µ0) = −0.0038(4)latt (4)NNLO; Cr

87(µ0) = 0.0040(21)latt (2)NNLO GeV−2 , (3.2)

in good agreement with, though less precise than the NNLO-LEC-induced part of the error obtained
explicitly in the continuum analysis of Ref. [14].

0 0.05 0.1 0.15 0.2 0.25
Q

2
 [GeV

2
]

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

L
10

r (0
.7

7 
G

eV
)

1/a=1.37 GeV, mπ=171 MeV

1/a=1.37 GeV, mπ=248 MeV

1/a=2.28 GeV, mπ=289 MeV

1/a=2.28 GeV, mπ=345 MeV

OPAL data+DV model

Figure 2: NLO results forLr
10(µ0) from analyses of lattice and OPAL+DV model versions of∆Π

4. Constraints on the π ′ and π ′′ Decay Constants

ExcitedI = 1 pseudoscalar mesons,P, couple with strengths 2fPm2
P to the divergence of the

flavor ud axial current. Their decay constants,fP, enter the conventional determination ofmu+md

employing sum rules for the two-point function of this divergence [16] and are currently determined
as part of the analysis. A similar internal determination isrequired in the extraction ofmu+ms from
sum rules for the two-point function of the divergence of theflavorusaxial current. Finally, flavor-
breaking sum rules used to determine|Vus| from hadronicτ decay [17, 18], or a combination of
hadronicτ decay and electroproduction cross-section data [19], encounter a problem with the very
bad convergence of the OPE representation ofJ = 0 contributions, necessitating the subtraction
of the chirally suppressed, but not totally negligible, strange excited state scalar and pseudoscalar
contributions to the differentialτ decay spectrum. The strange pseudoscalar subtraction relies on
the excitedK decay constants obtained in the sum rule analysis.

The lattice data allows us to test the reliability of the sum rule determination of such de-
cay constants, as follows. The quantityP(Q2) ≡ Q2∆Π(0)(Q2), which, for mu = md is equal to
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−Q2Π(0)
A (Q2), is free of kinematic singularities and satisfies a once-subtracted dispersion relation.

SinceΠ(0)
A (Q2) and the quantitiesmπ , fπ which determine the pion pole contribution to the dis-

persive representation are all measurable on the lattice, the following rearranged version of this
relation provides constraints on the continuum contribution, and hence on the excited state decay
constants,fπ ′ and fπ ′′ , for each pair ofQ2 and subtraction pointQ2

0:

P(Q2) − P(Q2
0) +

(Q2−Q2
0)2 f 2

π m2
π

(s+Q2)(s+Q2
0)

= −(Q2−Q2
0)

∫ ∞

9m2
π

ds
sρ (0)

A (s)

(s+Q2)(s+Q2
0)

. (4.1)

Spectral positivity ensures that the LHS provides an upper bound on the contributions from any sub-
set of the full set of excited pseudoscalar states. In the narrow width approximation, this constraint
represents a straight line in thef 2

π ′ - f 2
π ′′ plane for each pair(Q2,Q2

0). The fact that the excited state
decay constants scale asm2

π can be used to scale each such bound from the masses used in thesim-
ulation down to physicalmπ . It turns out that, at present, only the high-statistics, 1/a= 2.28 GeV,
mπ = 289 MeV ensemble provides data sufficiently accurate for this purpose. The envelope of
the resulting set of constraint lines, scaled down to physical mπ , is shown in Fig. 3. Also shown,
for comparison, are the results obtained/used in Refs. [16]. These are obviously in good agree-
ment with the lattice constraints, leaving room for small additional contributions to the dispersive
representation from yet higher excited pseudoscalar resonances.
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Figure 3: Lattice constraints on theπ ′ andπ ′′ decay constants
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