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We investigate Uy (1) breaking above T in terms of the Dirac spectrum on configurations with
(2+1)-flavors, using the HISQ action. The strange quark mass is at its physical value. We use
several light quark masses corresponding to the Goldstone pion masses in the range of about
115 — 230 MeV on lattices of size 32°x8 and 48 x8. We calculate the 100 lowest-lying Dirac
eigenvalues at temperatures below and above 7. We investigate the volume dependence of the
Dirac eigenvalue density to determine whether there is a gap around zero, which can appear if
U (1) symmetry is restored in the chiral symmetric phase. We also investigate the quark mass
dependence of the Dirac eigenvalue density at zero and check whether there is a linear behavior

that would signal the Uy (1) breaking above 7.
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1. Introduction

Quantum chromodynamics (QCD) with Ny flavors is invariant under a global flavor symmetry
of SUL(Ny) x SUR(Nys) x Uy (1) x Us(1) in the limit of vanishing quark mass. It is also known
that the SUL(Ny) x SUg(Ny) chiral symmetry is spontaneously broken in the vacuum and the Uy (1)
symmetry is explicitly broken due to the axial anomaly. However the chiral symmetry is expected
to be restored at high temperature. On the other hand, although the anomaly effect is present at
any finite temperature, it is suppressed at high temperature and accordingly the U4 (1) symmetry is
effectively restored. Here an important question is when and how such an effective U4 (1) symmetry
restoration occurs since it can influence the order of the chiral phase transition. In the case of Ny =2
it has been suggested [[I] that if the U4 (1) symmetry remains broken at the critical temperature 7,
of the chiral phase transition, the phase transition is of second order belonging to a universality
class of a 3-dimensional O(4) spin model. On the other hand, if both the chiral and the U4(1)
symmetries are restored at the same time, the phase transition should be of first order.

To study the QCD phase structure and properties of strongly interacting matter, where non-
pertabative effects play an important role, lattice QCD simulations are a suitable way. Some lattice
QCD studies with (2+1)-flavor staggered type quarks [2] Bl] have indicated at least O(N) scaling in
the analysis of the magnetic equation of state, although only the O(2) symmetry is preserved. Sim-
ilarly in the case of 2-flavor O(a) improved Wilson quarks [ Bl] O(4) scaling has been reported.
This suggests the second order phase transition scenario in the case of Ny = 2 massless quarks. In
our previous report [[f]] we investigated the temperature dependence of the Dirac eigenvalue distri-
bution and discussed a scaling behavior in the (2+1)-flavor case with the highly improved staggered
quark (HISQ) action [[7]]. There we found that the eigenvalue density around zero, which is related
to the chiral order parameter, has a crossover behavior and a power law dependence similar to
what is expected from the critical exponent of the O(2) or O(4) universality classes. Moreover, we
found no clear evidence for a gap around zero in the Dirac eigenvalue density at high temperature,
which supports Uy (1) breaking above 7. Recently the restoration of the U4 (1) symmetry in terms
of the Dirac eigenvalue distribution has been discussed also with domain wall [[8]] and overlap [
fermions, which have exact chiral symmetry on the lattice. With domain wall fermions there re-
main small eigenvalues even at high temperature. Whereas with overlap fermions a gap around
zero seems to appear above a certain temperature. However, the lattice sizes in these studies are
not large enough for definite conclusions and more detailed investigations are needed.

In this report we continue our study on the Dirac eigenvalue distribution at finite temperature
with the same setup as in [@l] and give more details about its volume and quark mass dependences
and the effective Uy (1) restoration. In the next section we discuss details of our study. Then we
show some numerical results in Sec. Bland finally give conclusions in Sec. [l

2. Effective Uy (1) restoration and the Dirac eigenvalue density

To discuss the effective restoration of the Uy (1) symmetry, we consider the chiral condensate
(Py) and several susceptibilities y defined in the 4-dimensional Euclidean space-time as follows:
_Tdmz T

= v = V(TrM”), 2.1
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where Z is the QCD partition function and V, T, m and M are volume, temperature, quark mass
and the fermion matrix, respectively. If the chiral symmetry is unbroken, (yy) =0 and xr = Xo.,
and accordingly Xz — Xs = Xdisc- In addition, if the U4 (1) symmetry is also unbroken, Y, = xs and
Xr — Xs = Xdise = 0. Here (Yy) and yr — x5 can be given in terms of the Dirac eigenvalue density
p(A,m)=(T/V){¥Lr6(M(m)— 1)) as follows:

_ [ 2mp(A,m)
(py) = A Wdlu (2.6)
[ 4m*p(A,m)
Xn—Xs = /0 mdla (2.7)

where we take V — co. Then, if m — 0 is also taken, the Banks-Casher relation [I0] (yy) =
7p(0,0) follows from (2.6), which means p(0,0) = 0 in the chiral symmetric phase. Thus eigen-
values close to A = 0 should be suppressed around 7 even if the quark mass is finite. On the other
hand, @.7) tells us that whether ), — x5 vanishes in the chiral limit or not depends not only on
p(0,0) = 0 but also on the approach of p(A,m) to the origin in the limits of m — 0 and A — 0.
Since only eigenvalues around A = 0 can contribute to the integral (2.7) when m — 0 is taken, one
possibility to let Yz — x5 become zero is that p(A,m) has a gap around A = 0.

Here, to consider other possibilities, we assume that the dominant contribution to p(A,m) at
small eigenvalues and quark masses is of the form cm® B AP In this case the above two quantities
are approximately rewritten as

(Wy) ~2em®L(B),  xn— x5 ~ 4em® 'L(B), (2.8)
with ;
A/m
L(B) = /0 m)fixz)kdx. 2.9)

In this study we examine whether the eigenvalue distribution p(A,m) remains finite at A = 0, i.e.
we consider the case B = 0. The dominant low eigenvalue structure of p(0,m) thus is assumed to
be p(0,m) = cm®. It is evident from (2.8)) that we need @ > 1 in order to have Y — X5 = Xdisc
finite above the critical temperature. Moreover, only for @ = 1 does X — X5 = Xdisc Stay non-zero
and thus would provide a sufficient signature for U4 (1) symmetry breaking. Of course, @ > 1 or
¢ = 0 are viable possibilities. In that case any remnant U4 (1) symmetry breaking would have to
arise either from the structure of p(A4,m) at A > 0 or a possible zero mode contribution p (A, m) ~

m28(1).
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Table 1: The parameters and statistics of the numerical simulations. 3, a, T, my, m;, Ny and N are the lattice
gauge coupling, lattice spacing, temperature, bare strange quark mass, bare light quark mass, spacial lattice
size and temporal lattice size, respectively.

B a[fm] T [MeV] ma # configurations
m/my=1/10 120 1/27 1/40
N} x N; =323 x 8

6.195 0.1932  127.7  0.0880 - 702 - 360
6.245 0.1832  134.6  0.0830 - 792 - 822
6.260 0.1803  136.8  0.0810 - 768 - 834
6.285 0.1756 1404  0.0790 - 714 - 882
6.315 0.1702 1449  0.0760 - 684 - 936
6.341 0.1656 1489  0.0740 - 612 - 402
6.354 0.1634  151.0  0.0728 - 534 1158 600
6.390 0.1573  156.7  0.0694 - 600 1458 600
6423 0.1520 1622  0.0670 312 696 1362 540
6.445 0.1486 1659  0.0652 - 600 1146 522
6460 0.1463  168.5  0.0640 - 582 - -
6.488 0.1422 1734  0.0620 - 678 - -
6.550 0.1335  184.8  0.0582 - 198 - -
7.150 0.0747  330.1  0.0320 - 594 - -
483 x 8
6423 0.1520 1622  0.0670 - 144 - -
6.445 0.1486 1659  0.0652 - 156 - -
7.150 0.0747  330.1  0.0320 - 306 - -

3. Numerical results

We use the tree level improved gauge action and the HISQ action [[Z]] which can reduce cutoff
effects due to the taste-symmetry violation better than any other staggered type quark action. Part of
our gauge configurations have been generated by the HotQCD collaboration [[LT]]. We perform our
simulations mainly on 323 x 8 lattices and for a few temperatures on 483 x 8 lattices to investigate
the volume dependence. The scale was set from the kaon decay constant fx. Our strange quark
mass m, is fixed to its physical value and we have several light quark masses m; which have values
of my/40, ms/27, my/20 and m,/10 corresponding to the lightest (Goldstone) pion of about 115,
140, 160 and 230 MeV, respectively. Here m; = m,/27 gives an almost physical pion mass and
the corresponding pseudocritical temperature in the continuum limit has been estimated at 154(9)
MeV by using O(4) scaling fits to the chiral condensate and susceptibility. The details of the
determination of the lattice spacing, the strange quark mass and the pseudocritical temperature
have been discussed in Ref. [[T]]. Each 10th trajectory is chosen for measurements after skipping
at least 500 trajectories for thermalization. Statistical errors are estimated by the jackknife method.
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Figure 1: Volume dependence of the Dirac eigenvalue density for m; /ms; = 1/20 at T = 330.1 MeV for all
configurations (left) and configurations with Q = 0 (right).

Our simulation parameters and statistics are summarized in Table [I}

We calculated the lowest 100 positive eigenvalues of the staggered (HISQ) Dirac operator for
all parameter sets since the staggered Dirac operator is anti-hermitian and has only pure imaginary
eigenvalues in complex conjugate pairs. We evaluate the eigenvalue density by binning eigenvalues
in some small intervals for each configuration and normalize it so that [dAp(A,m) = (T /V)x#
eigenvalues.

In our previous report [[6]] we found suppression of p(A,m) around A = 0 and lack of eigen-
values very close to zero above T;. At the same time, there was also a tail approaching the origin
in p(A,m) even at our highest temperature, i.e. 330.1 MeV. Since small eigenvalues could suffer
from finite volume as well as topological effects which should vanish in the thermodynamic limit,
investigating the volume dependence of p(A,m) is needed to judge whether there is a real gap
around A = 0in p(A,m). In the left side of Fig.[Ilthe volume dependence of p(A,m) at T = 330.1
MeV is shown; p(A,m) seems to have a quite small volume dependence in a region of A < 0.05,
although statistics is not enough to see it clearly. We also check for the effect from the (would-be)
zero modes of topological non-trivial configurations whose contribution to the eigenvalue density
at zero would vanish in the thermodynamic limit. The right side of Fig. [Il shows the same result
as on the left side but for topological trivial configurations. Here the topological charge Q is de-
termined form a lattice FF' operator with HYP fat links [[I2]]. It is clearly found that contribution
form small eigenvalues is more strongly suppressed and eigenvalues less than A ~ 0.03 disappears
in this case. However, since p(A,m) seems to decrease continuously and exponentially, it is possi-
ble that the tail of p(A,m) continues below the lowest value of our p(A,m), when a more precise
determination is made. Increased statistics and bigger volumes are needed to make more definite
statements.

As discussed in the previous section, the quark mass dependence of p(0,m) is also important to
understand Uy (1) restoration above 7. To estimate p(0,m) we fit p(A,m) to a cubic polynomial.
In this fit analysis we choose the same bin size of 0.0005 for all eigenvalue densities which we
calculated in order to control a systematic uncertainty coming from the bin size dependence. The
lower bound of the fit range is fixed to the lowest bin and the upper bound is chosen so that y2/dof
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Figure 2: The temperature dependence (left) and the quark mass dependence (right) of the Dirac eigenvalue
density at A = 0.

is as close to unity as possible. Then our y?/dof is in the range from 0.88 to 2.1. In the left side of
Fig. Pl the temperature dependence of p(0,m) is shown. It can be seen that p(0,m) monotonically
decreases as the temperature increases and, within statistical errors, it seems to vanish around
T =160 — 170 MeV at least for m;/ms; = 1/40, 1/27 and 1/20. Here we note that even above
the crossover transition temperature 7, as determined from the chiral condensate or susceptibility,
the condensate will stay non-zero for non-zero quark masses. The eigenvalue density p(0,m) thus
may stay non-zero and approaches zero smoothly also above 7.. The right side of Fig. [2] shows
the quark mass dependence of p(0,m) at four temperatures around 7, namely 7 = 151.0, 156.7,
162.2 and 165.9 MeV. At first, p(0,m) seems to approach zero in the chiral limit at the lower
two temperatures as expected in the chiral symmetric phase. However it is difficult to determine
whether p (0,m) approaches zero linearly so far. To do so we need simulations with smaller quark
mass. On the other hand, data for the higher two temperatures are very close to zero already at
my/mgs = 1/40. However, data for two different volumes at m;/mg; = 1/20 show finite volume
effects which indicate an increase of the density in the thermodynamic limit. This means that our
results at 7 = 166.8 and 170.5 MeV underestimate the infinite volume result. We thus need larger
lattices to get more accurate results. In addition, the eigenvalue density around zero at temperatures
close to T is sensitive to fit Ansatze since it changes quickly with respect to A. Hence using any
other fit Ansatze will help to estimate systematic uncertainty.

4. Conclusions

We study Uy (1) symmetry breaking in the chiral symmetric phase in terms of the Dirac eigen-
value distribution. In our (2+1)-flavor dynamical simulations, using the tree level improved gauge
action and the HISQ action, we investigate the volume and quark mass dependence of the eigen-
value density.

Even in the eigenvalue density at T = 330.1 MeV, we find that there is a tail approaching the
origin with only a small volume dependence. Moreover the lower end of the tail vanishes when
only topological trivial configurations are used. However it is not clear whether there is a gap or
whether a tail exists and would be visible with more statistics. We also find that the eigenvalue
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density at zero seems to go to zero in the chiral limit as expected for an unbroken chiral symmetry,
at7 =151.0 and 156.7 MeV, which are temperatures around 7,.. We also try to see, if the eigenvalue
density at zero has a linear quark-mass dependence, which would be sufficient to signal breaking
of the U4 (1) symmetry in the chiral symmetric phase. However it is difficult to identify it so far.

Increasing statistics and simulations with larger volumes and smaller quark masses are need
to make the above points clear.
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