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1. Introduction

Advances in both computer capabilities and numerical methods now make it possible to study
physically light pions in large spatial volumes using a chiral lattice fermion formulation. This
allows the study of standard quantities such as particle masses and decay constants with enhanced
precision, removing the uncertainties associated with using chiral perturbation theory to extrapolate
to physical quark masses. This ability to work directly with physical quark masses also allows us
to tackle the calculation of more complex quantities where the effects of using unphysically large
quark masses may be more difficult to estimate. In this paper we will discuss the calculation of
three such quantities, the decay amplitudes A0 and A2 for the decay of a K meson into I = 0 and
I = 2 two-pion final states and the mass difference, ∆MK between the KL and KS neutral kaons.

For K → ππ decay we will discuss the calculation of the ∆I = 3/2 amplitude, A2, with the kaon
and pion masses and the pion relative momenta taking their physical values [1, 2]. By working at
physical kinematics, the dominant errors come from computational issues such as non-zero lattice
spacing and finite volume which can be reduced in future calculations by simply working at smaller
lattice spacing and larger volume. We do not need to deal with an uncertain theoretical framework
to correct for the absence of the physical π − π relative momentum or unphysical pion or kaon
masses. For the more difficult calculation of the ∆I = 1/2 amplitude, A0 and ∆MK , where such a
physical calculation is not yet possible, we concentrate on developing the computational methods
which should allow a calculation with physical kinematics in the not-too-distant future.

2. K → ππ decay

Since the weak interaction W± bosons which mediate this decay are far too massive to simulate
in a lattice QCD calculation, our first step must be to represent W± exchange by the effective four-
Fermi interaction which results if the W exchange process is treated as taking place at a space-time
point. The resulting effective Hamiltonian is written as

H (∆S=1) =
GF√

2
VudV ∗

us

{
10

∑
i=1

[
zi(µ)−

Vtd

V ∗
us

V ∗
ts

Vud
yi(µ)

]
Qi

}
. (2.1)

Here Vqq′ is the Cabibbo-Kobayashi-Maskawa matrix element connecting the charge −1/3 quark
q′ to the charge +2/3 quark q. The Wilson coefficient functions yi(µ) and zi(µ) depend on the
scale µ at which the four-quark operators Qi are normalized and have been determined in QCD and
electro-weak perturbation theory through second order; see Ref. [3] for a thorough discussion.

The ten dimension-six, four-quark operators Qi, 1 ≤ i ≤ 10 are not independent but arise
from particular phenomena and are defined in Eqs. (4-23) of Ref. [4]. The operators Qi, i = 1,2
represent the naive current-current interaction resulting from simple W± exchange and transform
under SUL(3)× SUR(3) as both (8,1) and (27,1) representations. Those with i = 3 through 6
result from QCD penguin graphs in which a quark-anti-quark pair emerges from the point-like W
exchange and annihilate into a gluon which subsequently creates a possibly different q− q pair.
These operators transform in the (8,1) representation. The final four operators arise from electro-
weak penguin diagrams in which a quark-anti-quark pair emerging from the point-like W exchange
annihilate to create a photon or Z boson and transform as (8,8), (8,1) and (27,1). While one order
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smaller in electro-weak perturbation theory, the (8,8) operators can be important because of the
suppression of the leading order, ∆I = 3/2 component of the usual (27,1) matrix elements which
arises from the “∆I = 1/2 rule" and an extra power of M2

K appearing in chiral perturbation theory.
While this historical classification of the ten Qi operators is convenient for discussing the

electro-weak phenomena underlying the decay, when discussing renormalization and operator mix-
ing it is better to work with a set of seven linearly independent operators, four transforming in the
(8,1) representation, one in the (27,1) and two transforming in the (8,8) representation. If renor-
malization conditions are imposed in which the flavor-symmetry breaking quark masses can be
neglected then these three classes of operators will renormalize independently.

Critical to an accurate lattice calculation of a weak decay process such as K → ππ is the ability
to relate the lattice-regulated operators appearing in such a calculation to the continuum operators
for which the Wilson coefficients were originally computed. This can be done with increasing pre-
cision using the intermediate Rome-Southampton RI/MOM approach [5], enhanced by a number of
refinements over the past decade. Here one introduces a regularization-independent scheme to nor-
malize the lattice operators in which particular Landau-gauge-fixed, spin-color-projected, Green’s
functions are normalized at large, off-shell momenta at a scale characterized by µ . In this way, the
use of lattice perturbation theory is avoided and the original bare lattice operators are expressed in
terms of operators renormalized in a scheme which has a well-defined continuum limit. Because
of this non-perturbative step, these methods are referred to as non-perturbative renormalization
(NPR). If µ is sufficiently large, these same conditions can be accurately imposed in a perturbative
calculation allowing this RI/MOM renormalization to be connected to the standard perturbative
MS continuum scheme in which the Wilson coefficients are typically evaluated.

The effectiveness of these NPR techniques can be seen in the size of the normalization er-
rors presented below. Three important developments, all used in the calculations discussed here,
have made these NPR techniques more accurate. The first is the use of non-exceptional momenta
when imposing the RI/MOM normalization conditions [6]. This choice of momenta makes these
normalization conditions infrared safe, significantly reducing the contributions of small loop mo-
menta and making the use of QCD perturbation theory to relate the RI/MOM and MS schemes
more reliable. The second improvement recognizes that even at O(a2), lattice artifacts appear in
the RI/MOM normalization conditions which are not O(4) invariant. As a result the amplitudes
being studied depend not only on the usual Lorentz scalars such as p2 or p · p′, where p and p′ are
lattice momenta, but also on the direction of these momenta relative to the 4-D lattice axes. This
few-percent direction dependence introduces irregularities into what should be smooth dependence
on p2 and prevents the evaluation of the continuum limit if an a2 extrapolation is attempted using
lattice momenta in different directions and consequently with different a2 corrections. These diffi-
culties can be avoided by imposing twisted boundary conditions on the fermion propagators used
to evaluate the RI/MOM normalization conditions. By varying the degree of twist (the fermion
phase change when passing through a boundary) the magnitude of the lattice momentum can be
varied, e.g. to compensate for a change in lattice spacing when extrapolating to the continuum
limit, without changing the direction of that momentum relative to the underlying lattice [7, 8].

The third advance in NPR methods is using the momentum dependence of the RI/MOM renor-
malization factors to relate operators renormalized at significantly different scales [7, 8]. This al-
lows operators which are evaluated in a coarse lattice calculation, such as the K → ππ amplitudes
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discussed below to be accurately renormalized. In this K → ππ calculation the physical size of
the lattice is increased by using a relatively large lattice spacing of 0.144 fm. This limits the size
of the external momenta that can be employed in an RI/MOM renormalization condition to . 1
GeV, a scale too low for the application of perturbation theory. However, by using the step-scaling
function determined in a companion calculation on a finer lattice, these operators renormalized at 1
GeV can be accurately renormalized also at 3 GeV, a scale at which a perturbative calculation can
be used to convert to the standard MS scheme.

The final difficulty that must be overcome to carry out a realistic lattice calculation of K → ππ
decay arises from the non-zero relative momentum of the physical final state pions. In the usual
lattice QCD calculation, one uses the Euclidean time-development operator e−Ht at large t to project
onto the QCD energy eigenstates with the lowest energies. While this strategy works well to
construct the initial K meson, when applied to a state of two pions, unphysical, threshold states
with zero relative momentum pions result.

This difficulty can be overcome in two steps. The first, proposed by Lellouch and Luscher [9],
recognizes that in finite volume there will be additional excited states containing two pions obeying
energy quantization conditions that depend on the volume. With an appropriately chosen volume,
the resulting two-pion energy can be adjusted to equal that of the decaying kaon. Thus, by identi-
fying the transition amplitude to this excited state and introducing a finite-volume correction factor
derived in Ref. [9] the physical, on-shell, K → ππ decay amplitude can be computed with con-
trolled errors. However, the extraction of such an excited state is typically difficult and a second
step of imposing boundary conditions to remove some or all of the energy-non-conserving, lower
energy π −π states from the calculation can substantially improve the result [10, 11, 12]. We will
discuss such boundary conditions in greater detail below.

2.1 K → ππ decay with ∆I = 3/2

The K → ππ decay amplitude most accessible to the methods of lattice QCD is A2 which
describes the decay into the π −π state with isospin 2. This state does not have vacuum quantum
numbers and quark flavor conservation implies that the valence quark lines connect the initial kaon,
the effective four-Fermi weak operator and the final two pions. Thus, there are no disconnected
diagrams, no need for a vacuum subtraction and the light sea quarks do not play a critical role,
allowing boundary conditions to be applied only to the valence quarks with resulting errors that
vanish exponentially in the lattice size [13].

We ensure that the I = 2, π −π final state in a physical K decay is also the lowest energy I = 2
state in our lattice calculation by imposing anti-periodic boundary conditions on one of the quarks
in each pion and adjusting the lattice volume so that π/L is close to the 205 MeV momentum of
the physical decay pions. This is accomplished in two steps. First we use isospin symmetry to
relate a physical ∆I = 3/2, K decay amplitude to a transition caused by a related weak operator
carrying charge +1: K+ → π+π+. We then impose anti-periodic boundary conditions on the d
quark. The resulting K+ meson will obey periodic boundary condition so the initial K+ can be
given zero momentum. However, each π+ mesons will have non-zero momentum equal to π/L
except for rescattering effects. Normally the use of such isospin violating boundary conditions
would introduce potentially dangerous mixing between the I = 2 final state of interest and the I = 0

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
0
0
8

Calculating the two-pion decay and mixing of neutral K mesons Norman Christ

state which overlaps with the vacuum. However, by arranging the final state to carry charge 2 we
have assured that no I = 0 final state is possible.

The first calculation adopting this strategy was C. Kim’s Ph.D. thesis [14] which used a
quenched 163 × 32 ensemble and unphysically massive kaons and pions. An interesting related
calculation [15] studied the decay of a kaon carrying non-zero momentum, an alternative technique
to achieve a final π −π final state with physical relative momenta. The statistical errors and re-
sulting practical restriction on the separation between the kaon and π −π sources in this non-zero
momentum approach appear to favor the boundary condition strategy discussed here.

We now turn to the recent RBC/UKQCD calculation of A2, using a large lattice spacing of
1/a = 1.364(9) GeV, a near physical (partially quenched) pion mass of 142.11(94) MeV, a kaon
mass of 505.5(3.4) MeV and a two-pion energy of 484.5 (4.2) MeV [1, 2]. This two-pion energy
corresponds to a d quark which obeys anti-periodic boundary conditions in two of the possible three
spatial directions. Three independent effective weak operators contribute to the complex amplitude
A2: Q(27,1), Q(8,8) and Q(8,8)m. The computational setup is shown schematically Fig. 1(a). The
light and strange quark propagators are computed using both periodic and anti-periodic in the time
direction. The strange quark source is located at the tK , where seven values of tK are used varying
between tπ + 20 and tπ + 44 in steps of four time units where tπ locates of the source of the light
quarks. The sum of the periodic and anti-periodic propagators are used for both the light and
strange quarks to increase statistics and reduce around-the-world effects.

(a) The setup for the calculation of A2 with the
kaon wall source at the time the tK , the weak op-
erator at t and the two-pion source the time tπ .
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Figure 1:

In Fig. 2 we show a ratio Ri(tQ) of three-point to two-point correlation functions from which
the lattice matrix elements of the three operators Q(27,1) , Q(8,8) and Q(8,8)m are determined:

Ri(tQ) =
Ci

Kππ(tQ)
CK(tK − tQ)Cππ(tQ)

=
Mi

ZKZππ
. (2.2)

Here the location of the two-pion source has been set to tπ = 0 and the label i distinguishes the three
∆I = 3/2 operators being studied. The amplitudes Mi are the lattice matrix elements we are trying
to determine while ZK and Zππ are source normalization factors which can be determined directly
from the two-point functions. The ratio Ri(tQ) should not depend on tQ if only kaon and two-pion
states are present. The solid line shown in each graph indicates the fitted results, the dotted lines
the width of the error band and the horizontal position of these lines, the range over which the fit is
performed.
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(b) Q(8,8)
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Figure 2: Ratios of three point and two point functions described in the text from which the matrix elements
of the three operators Q(27,1) , Q(8,8) and Q(8,8)m are determined, plotted as a function of the time tQ at which
the operator is located. These are computed using anti-periodic boundary conditions in two spatial directions
for our full ensemble of 146 configurations. The two-pion source is located at tπ = 0 and the kaon source at
tK = 24.

The complex amplitude A2 can be obtained from the lattice matrix elements Mi using:

A2 =
1
a3

[
1

2πqπ

√
∂ϕ
∂qπ

+
∂δ
∂qπ

]√
3
2

GF

2π
VudV ∗

us ∑
i, j

Ci(µ)Zi jm
3/2
K M j, (2.3)

obtained from a combination of Eqs. (18) and (20) in Ref. [2]. The Wilison coefficients Ci(µ),
evaluated at µ = 3 GeV are obtained from next-leading-order formulae in Ref. [3]. The renor-
malization matrix, Zi j, transforms the lattice operators used on the DSDR ensemble into the MS
scheme at µ = 3 GeV. This matrix is determined using the step scaling methods described above.

The square brackets contain the Lellouch-Luscher correction factor with its sum of derivatives
of a known kinematic function ϕ and the I = 2 π −π s-wave phase shift δ . This phase shift can
be determined directly by applying the Luscher quantization condition [19] to the calculated π −π
energies for zero and two twists. The results are shown as the two red open circles in Fig. 2.1 and
contribute only 6% to the factor in square brackets.

Table 1 lists the systematic errors in this calculation. The largest comes from the large finite
lattice spacing and is estimated in two ways. First we vary the physical quantity that is used to
determine the lattice scale, using mΩ, fπ , fK and r0. Since the lattice spacing enters Eq. (2.3) with
the third power, this explicit, ≈ 5% uncertainty is amplified 3×. We obtain a similar estimate from
the a2 dependence of the K0−K0 matrix element of the related (27,1) operator which determines BK

and has been computed at a number of lattice spacings. A second error that should be mentioned
arises from partial quenching of the light quark mass, the valence and dynamical pions having
masses of 142 MeV and 171 MeV respectively. We estimate an upper bound on the resulting error
from threshold calculations of A2 performed on the RBC/UKQCD 1/a = 2.28 GeV ensembles in
which the dependence on the sea quark mass was zero within statistical errors.

We find Re(A2) = 1.381(46)stat(258)syst 10−8 GeV and Im(A2) =−6.54(46)stat(120) syst10−13

GeV. Here Re A2 agrees well with the experimental values of 1.479(4) and 1.573(57)10−8 GeV
obtained from K+ and KS decays respectively. The difference between these two experimental
numbers results from isospin breaking effects, which are not included in our calculation. The
imaginary part of A2 is unknown so that this result represents its first direct determination.
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ReA2 ImA2

lattice artifacts 15% 15%
finite-volume corrections 6.0% 6.5%
partial quenching 3.5% 1.7%
renormalization 1.8% 5.6%
unphysical kinematics 0.4% 0.8%
derivative of the phase shift 0.97% 0.97%
Wilson coefficients 6.6% 6.6%
Total 18% 19%

Table 1: Estimates of the major systematic errors in this calculation of Re A2 and Im A2.

Figure 3: The topologies distinguishing the four types of diagram contributing to the I = 0 amplitude A0

2.2 K → ππ decay with ∆I = 1/2

The calculation of the ∆I = 1/2 amplitude A0 describing kaon decay into the I = 0, π −π state
is much more difficult than that for A2. A total of 50 different contractions contribute which can
be organized into the four types shown in Fig. 3. The greatest difficulty is cause by disconnected
diagrams shown as type 4. Such diagrams lead to a signal-to-noise ratio which decreases expo-
nentially with increasing time separation and imply that both sea and valence quarks enter in the
physical propagating states. This requires that if boundary conditions are used to remove unwanted
zero relative momentum π −π states, these conditions must be imposed both when computing the
valance propagators and when generating the gauge ensembles. A further difficult comes from the
quadratically divergent quark loops found in diagrams of type 3 and type 4. While these terms do
not contribute to on-shell matrix elements, they can enhance off-shell, excited state contributions
by factors of 10-20 and some partial subtraction must be carried out if the usual large-time methods
are to be able to successfully remove the resulting excited state contamination.

However, while severe, these difficulties may be more easily overcome for a quantity such as
A0 which involves light pions with their positive definite propagators and a kaon, which has half the
mass of the much more difficult nucleon. Here we will summarize recent results for A0 obtained
with unphysical, threshold kinematics and relatively heavy pions which appear in Ref. [20] and
in the Ph.D. thesis of Q. Liu [21]. The former were obtained from 800 configurations using 2+1
flavors, 1/a = 1.73 GeV and an 163 × 32 lattice volume. In contrast to the calculations of A2

described earlier in which the two-pion was fixed on a single time slice, the correlation functions
used in the calculation of A0 were computed for each of the possible 32 time slices. With these large
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Figure 4: The point functions for the operators Q2 and Q6 as a functino of t the time slice over which that
operator is summed. In this figure, the pions in the two-pion source are located at the times −4 and 0 and
the kaon source at time 12. The close points show the result if the disconnected diagrams are omitted while
the open point show the complete result.

statistics, it was possible for the first time to determine Re(A0) from an explicit K → ππ matrix
element, with a statistical error of ≈ 25%. Of course, this 25% error was achieved for unphysical
threshold kinematics in which the two pions are at rest and for an unphysically large pion mass
of 422 MeV. (The valence strange quark mass was adjusted to make mK = Eππ so that an energy
conserving decay was studied.) The imaginary part of A0 could not be distinguished from noise.
This quantity is dominated by QCD penguin diagrams of type 3 and is more difficult to compute.

Exploiting what was learned in this 163×32 calculation, a more ambitious 243×64 calculation
was undertaken [21], again using the same gauge action and a smaller light quark mass, giving a 329
MeV pion mass. Two important improvements were realized. First, propagators both periodic and
anti-periodic in the time were evaluated. By using the sum of these propagators, the distance to the
nearest periodic image of the source is moved from 64 to 128 time units, substantially reducing the
around-the-world effects which gave the largest excited state contamination from the divergent type
3 diagrams in the 163×32 calculation. Second, the two-pion source was modified so that the pions
were emitted from different time slices. (We refer to this as a split-pion source.) This substantially
reduced the coupling to the vacuum state and the resulting noise in the disconnected diagrams.
With these advances, improved results were obtain using only 137 instead of 800 configurations.
Now both the real and imaginary parts of A0 can be resolved. The three-point functions for the
two dominant matrix elements are shown in Fig. 4. The open symbols show results without the
disconnected graphs while the closed symbols show the full result. While the statistical errors are
much larger for the full amplitudes, the central values are consistent with those coming from only
connected graphs. At present the disconnected diagrams are only a source of noise.

With the demonstration of methods capable of resolving both the real and imaginary parts
of A0, we can now work toward the physical kinematics used for the calculation of A2 described
above. The same Iwasaki plus DSDR gauge action but with the sea quark mass reduced to its phys-
ical value should permit calculation with physical pion and kaon masses. Recent RBC/UKQCD
experience [22] with the use of the Mobius variant of DWF [23, 24] suggests that the extent in the
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fifth dimension of 32 used in the current Iwasaki + DSDR, DWF calculations can be reduced to 16
to enable a high statistics study of A0. More challenging is the needed non-zero relative momentum
of the two final-state pions. As discussed above we plan to accomplish this by imposing G-parity
boundary conditions on the sea and valence quarks. This effort is well underway in a project carried
out by C. Kelly. Quenched studies have been performed [25] and code written which is currently
under test to generate N f = 2+1 gauge configurations obeying G-parity boundary conditions.

While a large reduction in the errors from the disconnected diagrams results from the use of
split-pion, Coulomb gauge fixed wall sources, we are optimistic that all-to-all propagator meth-
ods [26, 27] will allow us to construct even more effective split-pion sources using localized pion
wave functions, possibly gaining a further factor of two reduction in statistical error. A final criti-
cal acceleration is provided by the advance of computer technology. With the now available BG/Q
computer hardware and highly efficient QCD code described in Peter Boyle’s talk at this meet-
ing [28], the generation of 3K time units of a specialized 323 ×64 G-parity ensemble requires only
a few months on a BG/Q 1024-node rack. The difficult, high-statistics measurements used to obtain
the 243 ×64 results for A0 presented here formed the final project carried out on a 4096-node QC-
DOC partition in 2011. The sustained performance and memory size of this partition (1 Tflops/500
Gbytes) are equaled by 32 BG/Q nodes, allowing a calculation on a 512 node BG/Q partition to run
16 times faster. While important aspects of a calculation of A0 (which will give the standard model
prediction for ε ′/ε) with physical kinematics will remain uncertain until large-scale experiments
are begun in a few months, this calculation should be possible with present resources.

3. Computing the KL −KS mass difference

Much must yet be accomplished to accurately carry out the K → ππ decay calculations dis-
cussed in the previous section. However, it is plausible that the basic methods are now understood
and that presently available measurement algorithms and computer resources will be sufficient for
the task. In this last section of the talk, we will discuss a more difficult topic at a much earlier stage
in development, the calculation of “long distance” contributions to second order weak processes.
One might expect a large difference in complexity between the first order (one-W exchange) pro-
cesses responsible for K → ππ decay and the second order weak (two-W exchange) processes
needed for K0 −K0 mixing. However, if the two-W exchange is dominated by momenta on the
order of the W boson or top quark mass, then at the scale of hadronic phenomena this second order
process will appear to take place at a point and can be represented by a four-quark operator in a
lattice QCD calculation just as is done for processes that involve a single W exchange.

The CP violating, K0 −K0 mixing amplitude is dominated by short distance effects and the
corresponding mixing parameter εK is typically expressed as a product of a short distance Wilson
coefficient, derived from a box diagram in which two W bosons are exchanged, and the low energy
matrix element of a four-quark operator evaluated between K0 and K0 states, which determines the
familiar BK parameter. However, there is also an ≈ 5% “long distance” contribution to εK [29]
in which the two exchanged W mesons are separated by distances on the order of 1/ΛQCD or
1/mπ . Further, the CP conserving part of the K0 −K0 mixing amplitude which gives the KL −KS

mass difference ∆MK , receives a potentially large, long distance contribution. One expects that the
largest contribution to ∆MK comes from distances on the order of the inverse charm quark mass,

9
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Figure 5: The two possible low energy descriptions of a box diagram entering K0 −K0 mixing. Note there
can be overlap between these long- and short-distance contributions. The long-distance part, expressed as
the product of two weak operators HW , will itself contain a short distance part when these two operators
collide in space-time. Such a short distance component of this long distance amplitude will typically be
incorrect but, if significant, can be removed by explicit subtraction.

1/mc. This is conventionally referred to as a short distance contribution. However, perturbation
theory calculations show large NNLO terms [30] suggesting that this scale might be better thought
of as also a relatively long distance at which perturbation theory has become unreliable and again
a lattice QCD calculation is needed. These short- and long-distance contributions to a box diagram
which enters K0 −K0 mixing are illustrated in Fig. 5.

Two important questions arise when considering a lattice QCD calculation of long distance
effects in second-order weak amplitudes. The first is associated with the use of Euclidean space
methods to compute amplitudes with possible real intermediate states. These states result in prin-
cipal parts appearing in formula for the real parts and give imaginary parts which cannot appear in
a Euclidean space calculation. The second issue is the need to develop effective lattice methods to
evaluate the resulting four-point functions in which a K0 is transformed into a K0 by the action of
two, separated, first order weak operators HW . We will now consider each of these issues in turn.

The computation of long distance parts of second order weak processes is key to many impor-
tant weak processes, for example rare K decays [31]. Here we will focus here on K0 −K0 mixing,
typically described in the Wigner-Weisskopf formalism by the evolution equation [32]:

i
d
dt

(
K0

K0

)
=

{(
M00 M00
M00 M00

)
− i

2

(
Γ00 Γ00
Γ00 Γ00

)}(
K0

K0

)
(3.1)

where the 2×2 matrices M and Γ are given by:

Γi j = 2π ∑
α

∫ ∞

2mπ
dE⟨i|HW |α(E)⟩⟨α(E)|HW | j⟩δ (E −mK) (3.2)

Mi j = ∑
α

P
∫ ∞

2mπ
dE

⟨i|HW |α(E)⟩⟨α(E)|HW | j⟩
mK −E

. (3.3)

We are using the subscripts 0 and 0 to represent the K0 and K0 states and the generalized sum over
α and integral over the energy represents the sum over a complete set of energy eigenstates.
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In the method of Lellouch and Luscher, the Luscher finite volume condition [19] is used to
relate the finite volume energy of the K −ππ system to the infinite volume π −π scattering phase
shift evaluated at the resonant energy corresponding to on-shell K → ππ decay. Both quantities
are evaluated to first order in HW : the first order shift in the finite volume π −π energy coming
from the coupling to the degenerate K state and the Breit-Wigner resonant contribution to π −π
scattering evaluated at the kaon pole.

A generalization of this approach connects the infinite-volume, second-order mass difference
∆MK which shifts the location of the kaon pole in resonant π − π scattering to the second order
degenerate perturbation theory of a finite volume system including two or three nearly degenerate
states: a two-pion state and either a CP even or both CP even and odd K0 −K0 states, depending
on whether we wish to treat only ∆MK or both ∆MK and εK [33, 34]. In contrast to the Lellouch-
Luscher correction, the effect of finite volume is not a multiplicative factor but an additive, 1/L3,
correction. For ∆MK the infinite- and finite-volume expressions are related through O(1/L3) by

∆MK = 2 ∑
n ̸=n0

⟨K0|HW |n⟩⟨n|HW |K0⟩
mK −En

+
1

∂ (ϕ+δ0)
∂E

[
1
2

∂ 2(ϕ +δ0)

∂E2 |⟨n0|HW |KS⟩|2

− ∂
∂En0

{
∂ (ϕ +δ0)

∂E

∣∣∣∣
E=En0

|⟨n|HW |KS⟩|2
}]

. (3.4)

Here the state |n0⟩ is a two-pion state whose energy has been adjusted to equal that of the K meson
by the choice of volume. This result suggests that just as for the K → ππ decay amplitude, the long
distance parts of second-order weak K0−K0 mixing amplitude should be accessible to a Euclidean
space calculation with controlled finite-volume errors.

We now discuss the methods needed to carry out such a second-order weak calculation using
lattice QCD. This has been an active project of the RBC/UKQCD collaboration for the past two
years and has been carried out and reported on at both the current and previous Lattice Field Theory
Symposia by J. Yu [35, 36]. The basic idea is to integrate the product of two effective weak
Hamiltonia HW (ti), i = 1,2 over a fixed temporal region ta ≤ t1, t2 ≤ tb, taking the matrix element
between K0 and K0 states:

A = ⟨0|T
(

K0(t f )
1
2

∫ tb

ta
dt2
∫ tb

ta
dt1HW (t2)HW (t1)K0(ti)

)
|0⟩. (3.5)

This product is illustrated in Fig. 6.
We can evaluate Eq. (3.5) by inserting sums over complete sets of intermediate states and

carrying out the integrals over t1 and t2. These are actually sums over discrete times which can be
evaluated as partial geometric series and approximated for small a to give:

A = N2
Ke−MK(t f −ti)

{
∑

n̸=n0

⟨K0|HW |n⟩⟨n|HW |K0⟩
MK −En

(
−(tb − ta)−

1
MK −En

+
e(MK−En)(tb−ta)

MK −En

)
+

1
2
⟨K0|HW |n0⟩⟨n0|HW |K0⟩(tb − ta)2

}
. (3.6)

This equation contains four terms which should be interpreted: three within the large curved brack-
ets and the fourth term with the 1/2 prefactor. The first term, proportional to tb − ta, is the desired

11
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Figure 6: A diagram showing the elements of a lattice calculation of the long distance contribution to
∆MK . The times t1 and t2 appearing in the two effective weak operators are integrated over a fixed interval
ta ≤ t2, t1 ≤ tb. In Minkowski space such an amplitude would yield the second order mass shift times the
elapsed time interval tb − ta.

u, c

u, c

d

s d

s

(a) Type 1

d

s d

s

c, u

c, u

(b) Type 2

d
s

s d

c, u

c, u

(c) Type 3

d

s d

s
u, c u, c

(d) Type 4

Figure 7: Examples of the four types of diagram that enter the calculation of the second order weak
contribution to ∆MK .

finite-volume expression of the mass difference. The second is an uninteresting, time-independent
constant, the third disappears at large time for all states more massive that the kaon. States which
are lighter than the kaon will give exponentially growing contributions which must be evaluated
separately and subtracted. The fourth term, proportional to (tb − ta)2, results if the volume has
been adjusted to create a state, |n0⟩, degenerate with the K. This term must also be identified and
discarded if the prescription to control finite volume errors described above is followed.

Figure 7 shows the four types of diagram which contribute to the amplitude A . In the first
exploratory calculation of this quantity [35, 36], diagrams of type 3 and 4 which are disconnected
in the t or s channel are neglected. This calculation is performed on an ensemble of 163 × 32
configurations with 1/a = 1.73 GeV, generated using 2+1 flavors and the Iwasaki gauge action.
In order to realize GIM cancellation, a valence charm quark is included and the effective weak
Hamiltonian appropriate for four flavors is used. This Hamiltonian includes the six weak operators

Qqq′
1 = siγµ(1− γ5)diq jγµ(1− γ5)q′j Qqq′

2 = siγµ(1− γ5)d jq jγµ(1− γ5)q′i (3.7)

where i and j are color indices while q and q′ are u and/or c quarks. The introduction of a charm
quark into a lattice calculation with an inverse lattice spacing 1/a = 1.73 GeV will introduce po-
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(b) The mass difference ∆M11
K , obtained from

the slope of the amplitude in Eq. (3.6) with re-
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traction of the light pion contribution, plotted as
a function of the valence charm quark mass. The
‘11’ superscipt indicates that only the contribu-
tion of the product of operators of the type Q1 is
shown.

Figure 8: Results from the lattice QCD calculation of ∆MK .

tentially large discretization errors requiring future work with smaller a. The GIM cancellation is
complete: the short distance part of our HW ×HW product is inaccurate at the level of (mc/mW )2,
much smaller than the (mca)2 discretization errors.

Preliminary results are shown in Fig. 8. The left panel shows the linear behavior as the integra-
tion time interval tb − ta is varied suggesting that the required slope is not difficult to extract, after
the exponentially growing contribution from the light π0 state has been removed. The right panel
shows the increasing values for ∆MK that result for increasing charm quark mass, mc. This figure
also suggests the presence of a sizable constant term needed to describe the large mc dependence,
reflecting a significant, mc-independent long-distance contribution, at least for the large values of
light and strange quark masses used here. The final results for ∆MK vary between 5.12(24) and
9.31(65) 10−12 MeV as the kaon mass varies between 563 and 834 MeV, for a pion mass of 421
MeV. These results are somewhat larger than the experimental value of 3.483(6) 10−12 MeV.

4. Conclusion

Substantial advances in computer capability and powerful new numerical methods are dramat-
ically increasing the accuracy with which standard quantities can be computed using lattice QCD
and expanding the range of important quantities which can be calculated. By working at physical
light quark mass and relatively coarse lattice spacing, it is now possible to directly calculate the
I = 2 K → ππ decay amplitude A2 with the largest error coming from finite lattice spacing effects.
Over the next couple of years, it should be possible to repeat these calculations on a series of ensem-
bles with varying lattice spacing, reducing the error on A2, perhaps to the 5% level expected from
isospin breaking effects. The more difficult I = 0 amplitude A0 has been computed for unphysical
kinematics and calculations with physical kinematics are now being actively planned. Much more
ambitious is the calculation of the KL −KS mass difference ∆MK which appears to be within reach.
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While exploratory calculations are now underway, results with controlled errors on the 5% level for
∆MK are likely five years away. The results reported here represent a major research direction of
the RBC and UKQCD collaborations and I thank my collaborators whose work is being described.
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