PROCEEDINGS

OF SCIENCE

Parallel Computing Workshop

Enol Fernandez-del-Castillo*
Instituto de Fisica de Cantabria (IFCA), CSIC-UC, Spain

E-mail: enolfc@ifca.unican.es

John Walsh'
Trinity College Dublin, Ireland
E-mail: John.Walsh@scss.tcd.ie

Alvaro Simon?*
CESGA, Spain

E-mail: asimon@cesga.es

The European Grid Infrastructure (EGI) offers a platform to execute parallel applications using
a wide range of technologies and paradigms such as message passing with MPI, shared memory
programming with OpenMP, or GPGPU programming.

The objective of this workshop is to present the latest advances in the support for MPI and parallel
jobs on the European Grid Infrastructure. The following topics are covered: the MPI Virtual Team
objectives and status; an update of the latest features and developments of MPI-Start; the use of
MPI-Start for generic parallel jobs; and a summary of the current status of the support for GPGPU

programming.

EGI Community Forum 2012 / EMI Second Technical Conference,
26-30 March, 2012
Munich, Germany

*Speaker.
Speaker.
Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:enolfc@ifca.unican.es
mailto:John.Walsh@scss.tcd.ie
mailto:asimon@cesga.es

Parallel Computing Workshop Alvaro Simon

1. Introduction

Execution of parallel applications in clusters and HPC systems is commonplace. Grid infras-
tructures are mainly used for the execution of collections of sequential jobs although most Grid sites
are clusters where execution of parallel applications is possible. The EGI Infrastructure [3] offers a
platform to execute parallel applications using a wide range of technologies and paradigms such as
message passing with MPI, shared memory programming with OpenMP, or GPGPU programming.

Previous workshops have covered the support for MPI in the infrastructure and middleware
[20] and provided users with tutorials to execute their MPI jobs using the available tools [8]. In
this workshop we will cover the following topics: Section 2 describes the work of the MPI Virtual
Team of EGI-InSPIRE, created to improve the usage of MPI in the infrastructure. Next, Section
3 presents the status of the MPI-Start development and new features that may improve the users’
experience, including the use of MPI-Start for hybrid OpenMP/MPI programming. The execution
of non-MPI parallel jobs is considered in the following sections. On Section 4, we describe how
MPI-Start may be used for the execution of generic parallel jobs, while on Section 5 an introduction
to GPGPU programming is given. Last, some Conclusions are given on Section 6.

2. The MPI Virtual Team

The Virtual Team (VT) framework has been created within the NA2 activity of the EGI-
InSPIRE project to improve the efficiency and flexibility of the interaction between the NGIs and
EGl.eu User Communities. The original idea was to create short living projects that focus on well
defined, non-operational activities around the production infrastructure. Different VTs cover dif-
ferent areas [4] (such as Marketing and Communication, Technical outreach, etc) and are open for
NGlIs, countries and regions that are not involved in NA2 or in EGI-InSPIRE. These entities can
join existing Virtual Teams or propose new Virtual Teams.

One of these new created VTs is the MPI VT [17]. This new team has different objectives:

e Collaborate with user communities and projects that use MPI resources.
e Promote MPI deployment.
e Enhance MPI experience and support for EGI users.

e Produce materials (tutorials, white papers, etc) about successful use cases of MPI on EGI
that can be used by new communities.

The new VT is a short living project (it has a life time of 6 months). It was started the past
November 2011 and it will end at the end of May 2012. This work will provide an output at the
end of the VT timeline:

e Improve the communications between MPI users and developers within EGI SA3.
o Improve/create new MPI documentation for EGI users and administrators.

e Find and detect current issues and bottlenecks related with MPI jobs.

Parallel Computing Workshop Alvaro Simon

e Setup a VO on EGI with site committed to support MPI jobs.

Due to the complexity of this project it was split in six tasks. These new tasks were assigned
to different MPI VT members to be accomplished during the next months.

2.1 Task 1: Documentation

MPI documentation was fragmented in different places and in most cases only site admin
oriented. MPI user communities are demanding new and improved user oriented documentation.
To solve this documentation gap MPI VT has created an specific task to solve this issue. In the last
months the current MPI EGI documentation was improved to include these new features. Currently
the MPI VT group is working to include in the same endpoint a MPI user guide to help MPI user
communities. The tasks undertaken are:

e Review and extension of documentation by MPI VT members.
e MPI Administrator guide: https://wiki.egi.eu/wiki/MANO3.
e Working on an MPI user guide.

e Propose to concentrate documentation under a single endpoint.

2.2 Task 2: Information System

The information system is a critical gear for any grid infrastructure. One of the most common
failure reasons for MPI jobs is due to sites information system misconfiguration. To fix this issue
and improve MPI sites reliability, a Information System task was created within the MPI VT. If this
information is not published correctly MPI jobs may fail or queued indefinitely. This task has the
following objectives:

e Detect if grid sites are publishing correctly MPI tags and flavours.

o Inspect which GLUE 1.3/2.0 variables could be used in the MPI context and ask for its
correct implementation.

MPI VT members have detected a valid GLUE variable that can be used by MPI jobs: MaxS-
lotsPerJobs. This value reflects the maximum number of slots which could be allocated to a single
job. Unfortunately this value is not filled by the current LRMS Information Providers and only an
static 7999999999 value is published by default. MPI VT is in contact with the different Technol-
ogy Provides to show this information by the information providers.

2.3 Task 3: MPI monitoring

Current EGI monitoring system does not detect if a MPI site is really working fine or not (only
an MPI “Hello word” is submitted). A new set of nagios probes specifications were created by
MPI members to check if MPI sites are working correctly. The new specifications were reviewed
by MPI members and it will be developed by SA3 team to be included into EGI nagios framework.
The new probes will include these tests:

Parallel Computing Workshop Alvaro Simon

e Environment sanity check: To detect if a site has the GlueCEPolicyMaxSlotsPerJob variable
set to a reasonable value and detect The information published by the (MPI or Parallel)
service.

e Check the MPI functionality with a minimum set of resources (run MPI job using two slots
in different machines).

e Complex Job check. This probe will requires 4 slots with 2 instances running in different
dedicated machines.

The new nagios MPI probes will be able to detect any MPI issue or misconfiguration and will
improve the MPI availability and reliability metrics.

2.4 Task 4: Accounting

EGI accounting system based on APEL is not ready yet to include parallel jobs usage records.
This is an open task inside EGI project (with a specific task JRA1.4). The only way to recognise a
parallel job in the accounting system is by checking jobs with efficiency > 1, although this does not
guarantee a parallel job execution. APEL developers are working to provide new plugin to include
parallel jobs accounting. To help in this task MPI VT members are in contact with EMI and APEL
developers to provide a complete MPI accounting able to correctly record parallel usage at the end
of 2012.

2.5 Task 5: LRMS status

Another important task for MPI Virtual Team members is to detect new potential failures in
different batch systems. In the last months several issues that affect directly to the parallel job
execution were detected .

One of these bugs was detected in MAUI, typically used in conjunction with the Torque sched-
uler. Due to this issue, Torque was not able to submit jobs that require more than a single node.
VT members have contacted directly to EMI maintainers and a new fix will be available in the
next EMI release. An important point is that some LRMS are supported by third parties, are not
maintained directly by the technology providers like EMI. This issue was raised by MPI VT to take
into account of the different LRMS releases and updates.

2.6 Task 6: MPI user communities and VO

VTs were created to improve the interaction between the NGIs and EGl.eu. The MPI VT is
regularly in contact with different NGIs to gather information about different MPI use cases and
site administrator feedback. In the first months of life of the VT several reports and surveys were
submitted to the NGIs. These reports are discussed and reviewed by the MPI members in order to
try to help user communities and site administrators. In order to help MPI site admin to configure
parallel environments in their sites it was created a new MPI VO within VT. The new VO will bring
together sites and users interested in MPI but it is not a permanent VO. It was created for testing
purposes to collect experience that will be later adopted by regular VOs. MPI VO configuration
is available in the MPI VT wiki page and could be used by any site to support it and test MPI
functionalities.

Parallel Computing Workshop Alvaro Simon

3. MPI-Start

In order to provide a uniform interface for running MPI applications in grid environments,
MPI-Start project was started in the frame of int.eu.grid [16]. Currently its development continues
in the framework of the EMI project [6]. MPI-Start is a unique layer that hides the details of the
resources and application frameworks (such as a MPI implementation) to the user and upper layers
of the middleware. The use of such layer removes any dependencies in the middleware related to
starting parallel applications.

MPI-Start is composed by a set of scripts that ease the execution of MPI programs by using a
unique and stable interface to the middleware. The scripts are written in a modular way: there is
a core and around it there are different plug-ins. Three main frameworks are defined in the MPI-
Start architecture: Scheduler, that deals with the local batch systems; Execution, that manages the
special parameters needed to start each MPI implementations; and Hooks, that provide additional
features and is customisable by both sites and final users. A detailed description of the architecture
and main features of MPI-Start is available at [2]

The latest released version of MPI-Start in EMI is 1.2.0, that was made available as part of
EMI-1 update 11 ! on 12th of December 2011. This release is an enhancement of the MPI-Start
1.x series that are included in the first EMI-1 release and subsequent updates. The main features of
this release are:

o Support for MPI implementations: Open MPI [9], MPICH [12] (including MPICH-G2 [13]),
MPICH2 [11], and LAM-MPI [19].

e Support for Local Resource Management Systems: SGE [10], PBS/Torque [1], LSF [21] and
Condor [15].

e Support for controlling the placement of processes on the allocated machines, including set-
ting processor and memory affinity (for Open MPI and MPICH2). This allows the execution
of Hybrid MPI/OpenMP applications as described in the next section.

e Detection of the appropriate compilers for the MPI implementation in use.

e Use of command line parameters instead of environment variables for defining the MPI-Start
behaviour.

e Refactored configuration that allows sites and users to provide their own plugins for the
scheduler or execution framework.

3.1 Hybrid MPI/OpenMP Applications

Parallel applications using the shared memory paradigm are becoming more popular with the
advent of multi-core architectures. MPI-Start default behaviour is to start a process for each of
the slots allocated for an execution. However, this is not suitable for applications using a hybrid
architecture where several threads access to a common shared memory area in each of the nodes.

1http ://www.eu—emi.eu/emi-1-kebnekaise-updates/-/asset_publisher/Ir6q/
content/update-11-15-12-2011

Parallel Computing Workshop Alvaro Simon

pO p1 p2 p3

9 pN 13 p15 ! ! 4 .
p0p1p2p3 papspep7 ps" pid p12 pid tren uuen oo uwes

CPUO CPU1 CPU 1 CPU 1 CPUO CPU 1 CPUO CPU1

Host 0 Host 1 Host O Host 1

po p1

A A
0 R WHBHBT 023 41516 t7

CPU O CPU 1 CPUO CPU 1

Host O Host 1

Figure 1: MPI-Start mapping of processes. (a) Top left: per core; (b) Top right: per socket; (c) Bottom: per
node.

In order to support more use cases, the latest report of MPI-Start includes support for better control
of how the processes are started, allowing the following behaviours:

o Define the total number of processes to be started, independently of the number of allocated
slots.

e Start a single process per host. This is the usual use case for hybrid jobs with and MPI
applications. MPI-Start prepares the environment to start as many threads as slots available
in the host.

e Start a single process per CPU socket. In this case, an hybrid application would start as many
threads as cores are available for each CPU.

e Start a process per CPU core, independently of the number of allocated slots.

e Define the number of processes to be started in each host, independently of the number of
allocated slots at each host.

All these modes must be used with caution, since they could interfere with other jobs running in the
machines. It is recommended that node exclusivity is enforced on the job submission (e.g. using
the WholeNodes attribute of JDL).

Figure 1 shows the different possible mappings for two hosts with two quad-core CPUs. In the
per core case, there would be 16 MPI processes, numbered from p0O to p15, each assigned to one
CPU core. In the case of using a per socket mapping, each host would have two different processes
— p0 and p1 in the first host, p2 and p3 in the second host — and for each of these processes, 4
different threads (¢0 to ¢3). Finally, if the per node mapping is used, only one processes would be
started at each host — p0 in first host, p1 in the second one — and 8 threads would be started for
each of them, numbered from 70 to ¢7.

The jobs depicted in Fig. 1 can be submitted with a JDL that specifies the NodeNumber,
SMPGranularity and WholeNodes attributes, as shown below:

Parallel Computing Workshop Alvaro Simon

Executable = "/usr/bin/mpi-start";

Arguments = "-t openmpi user_app argl arg2";
NodeNumber = 2;

SMPGranularity = 8;

WholeNodes = True;

InputSandbox = {"user_app", ...};

The JDL requires 2 different hosts, each with 8 cores and used exclusively by the job. With
the arguments shown, mpi-start would execute the user_app with Open MPI using the process
distribution of case (a) in the Figure, without any special treatment of the allocated resources. Case
(b) would be achieved by adding the ~-psocket option to the Argument s attribute:

Arguments = "-t openmpi -psocket user_app argl arg2";

The behaviour of case (c) is obtained by using the —pnode option in the Arguments at-
tribute:

Arguments = "-t openmpi -pnode user_app argl arg2";

In this case, using the ~pcore option would be equivalent to not using it since there is a slot
allocated per each of the available cores as defined in the JDL.

MPI-Start also provides a set of variables accessible from the user application that describe
the allocated resources by the batch system as well as the placement of processes that is used for
the execution.

3.2 Integration with ARC and UNICORE: towards EMI-ES

MPI-Start was originally developed for the integration with the glite [14] middleware, al-
though the design and architecture of MPI-Start is completely independent of this middleware.
With the latest releases, MPI-Start can be integrated with the ARC and UNICORE stacks using the
native mechanisms of each platform.

In the case of ARC [5], a new Runtime Environment that invokes MPI-Start is available. In the
case of UNICORE [7] a Execution Environments is defined using a XML file where the different
options available to the users are described. In order to use MPI-Start in such way, we introduced
the possibility of setting the parameters via command line arguments instead of environment vari-
ables.

In order to provide a unified interface for the different middleware stacks in EMI, the EMI
Execution Service (EMI-ES) [18] was developed. This specification includes a Parallel Environ-
ment section that will provide a simple and user-friendly way of setting up parallel jobs. Each
parallel environment is identified by a type (e.g. generic MPI, Open MPI, MPICH?2) and a version.
Additional option tags allow users to specify non default behaviour and resource specification field
allows setting the number of processes per slot or threads per processes to be used. Once the
EMI-ES implementations are available, MPI-Start will be adapted to act as back-end of the Parallel
Environments, thus all the MPI-Start features will be easily accessible from the new interface.

4. Using MPI-Start for Generic Parallel Jobs

The MPI frameworks (OpenMPI, MPICH) are the most successful methods for managing
parallel workloads distributed across a local network. However, numerous legacy applications

Parallel Computing Workshop Alvaro Simon

using the parallel virtual machine (PVM) framework are still in general production use, and more
importantly, several newer paradigms for handling distributed workloads have also emerged. These
include Map/Reduce and Charm-++.

The gLite JDL NodeNumber variable allows a user’s job to request multiple job slots on a
Computing Element. This facilitates allocation of worker-node resources, but not execution of the
workload across those resources. The MPI-Start framework, however, was developed and has been
successfully used for many years on the EGI infrastructure for exactly this purpose.

The authors investigated whether MPI-Start could be used as a way to handle non-MPI parallel
workloads. The experiments were carried on an MPI enabled site with shared filesystem (i.e.
publishing MPI_SHARED_HOME). However, the methodology can be extended to accommodate
other resource centre setup scenarios.

4.1 From mpiexec hacks to building blocks

The OSC mpiexec FAQ? describes how mpiexec can be used to execute remote processes and
to copy files between nodes. These recipes can be used as a primitive building blocks to develop
more complicated applications. Moreover, all mpiexec implementations may be used to execute
non-mpi executables. We recommend, however, that users should continue to use the MPI-Start
framework as this provides environment setup, file-copying, and explicitly launches mpiexec with
the correct parameters.

4.2 Master/Slave Applications

Both OpenMPI and MPICH?2 define a number of environment variables that are available to
every MPI process. In particular, they export variables which relate to the number of process
slots allocated to the job and to the MPI Rank of the processes. Using this information one can
nominate a "master” or coordinator process in the set of processes. This allows us to accommodate
master/slave use-cases. Table 1 lists a selection of MPI related environment variables.

MPI distribution | Rank Identifier Comm Size
OpenMPI OMPI_COMM_WORLD_RANK | OMPI_ COMM_WORLD_SIZE
MPICH2 MPIRUN_RANK MPIRUN_NPROCS

Table 1: Example MPI related environment variables

A simple indication of how this can be used in practice can be found in the listing below.
Further information and full examples can be found on the EGI Parallel Computing Support User
Guide web page>.

#!/bin/bash

if test x"SOMPI_COMM_WORLD_RANK" = x"0" ; then
Code for coordinating master process
else

Code for slave processes
fi

2http://www.osc.edu/~djohnson/mpiexec/index.php#Cute_mpiexec_hacks
3https://wiki.egi.eu/wiki/Parallel_ Computing_Support_User Guide

Parallel Computing Workshop Alvaro Simon

4.2.1 A Charm++ master/slave application

Charm++ is an object based parallel programming system. It’s execution model is message-
driven, with Charm++ computations triggered based on the reception of associated messages.
Moreover, it has an adaptive runtime system, and supports message-driven migrateable object. To
install Charm++ it must first be compiled from source. The authors were able to package Charm++
6.21 into a compatible Redhat Package Management (RPM) format, and then deployed it at the
Trinity College Dublin grid resource centre.

A simple example using the 3darray example code from the Charm++ distribution can be found
below. Note in particular that we must convert the PBS machinefile into a Charm++ compatible
format.

#!/bin/bash

export LD_LIBRARY_PATH=$LD_LIBRARY_ PATH:/opt/charm/lib
export PATH=S$PATH:/opt/charm/bin
if test x"$OMPI_COMM_WORLD_RANK" = x"0" ; then
echo "Now building Charm++ 3darray example"
make —-f Makefile
cat ${MPI_START_MACHINEFILE} | sed 's/"/host /g’ > charm_nodelist
charmrun ++remote-shell ssh ++nodelist charm _nodelist \
./hello +pS${OMPI_UNIVERSE_SIZE} 32 +x2 +y2 +z2 +isomalloc_sync
fi
The slave node does not actively do anything, it’s processes are
launched by the Charm++ "remote-shell" invocation.

4.2.2 Map/Reduce - Hadoop on Demand

It is not hard to see how the "coordinator" model can be used in a much more general sense.
The authors are currently investigating how to use this method to implement Hadoop-on-Demand
[22], a system for provisioning virtual Hadoop clusters using existing batch systems, in the grid
environment.

5. GPGPU programming

The increasing capabilities of general purpose graphics processing units (GPGPUs) over the
past few years has resulted in a huge increase in their exploitation by all the major scientific disci-
plines. With three of the top five clusters in the current November 2011 Top500* supercomputers
list using NVIDIA GPGPUs, we would expect the number of GPGPU deployments at grid resource
centres to grow significantly over the next few years. However, there are two major problems in
supporting grid access to such resources. Firstly, there is currently no standardised way for re-
source centres to advertise/publish availability of these resources. Secondly, there are deficiencies
in current batch scheduling systems which make it difficult to guarantee exclusive access to those
resources.

4http://www.top5OO.org/lists/2011/1l

Parallel Computing Workshop Alvaro Simon

GPGPU Application development is dominated by two API frameworks: OpenCL[23] and
CUDA[24]. OpenCL supports heterogeneous compute environments such as AMD and Intel CPUs,
AMD, Intel and NVIDIA GPGPUs, and Cell Broadband Engine processors. CUDA applications
currently run on NVIDIA GPGPUs devices only. However, the GNU Ocelot project[25] is attempt-
ing to enable CUDA application development for non-NVIDIA processors. CUDA applications
offer a performance advantage over OpenCL[26].

GPGPUs are highly efficient for "single instruction, multiple data" (SIMD) models of exe-
cution. The authors are able to report successfully running a hybrid MPI/OpenCL application on
the grid infrastructure using 16 individual machines and 30 NVIDIA GPGPUs>. MPI was used
for inter-node communication, and OpenCL was responsible for device allocation and workload
distribution to Intel CPUs and NVIDIA GPGPU devices.

5.1 GPGPU Grid Integration Challenges

Although it is fairly straightforward to assemble grid-enabled worker nodes with GPGPUs,
integrating them as first class resources, such as CPU and storage resources, into the grid infras-
tructure is a much more challenging problem. The fundamental issues can be classified as follows:

e Some batch system integration support,

e Inadequate Operating System hardware device level security,

e Lack of a standardised grid glue-schema support for GPGPUs, and
e Lack of information system plugins.

None of these issue are huge technical hurdles, and in particular, most recent versions batch
systems such as LSF, Torque, SGE and Slurm have some level of support. The only batch scheduler
which does have issues is Maui, but some experimental patches are available for this. Glue-schema
support requires standardisation and agreement within the grid community.

6. Conclusions

The execution of parallel applications in grid environments is a challenging problem that re-
quires the cooperation of several middleware tools and services. Although the support from mid-
dleware and the infrastructure is constantly improving, users still need guidance and support from
experts that help them with they day to day issues. Both the SA3 task, devoted to provide sup-
port for MPI jobs, and the MPI Virtual Team recently created, help users to get their parallel jobs
running in the available resources.

The latest developments in MPI-Start, a tool that provides a unique layer for several MPI
implementations, have introduced better control of job execution, the possibility of running hybrid
MPI/Open MP applications and the integration with ARC, gLite and UNICORE middleware stacks.
Users are totally abstracted by using the unique interface of MPI-Start and can easily migrate their
application from one middleware provider to another.

SEach node had 2 GPGPUs, but the master node did not use any of its GPGPUs

10

Parallel Computing Workshop Alvaro Simon

The execution of parallel jobs is not limited to MPI. Other generic parallel jobs can be executed
with the help of MPI-Start and MPI tools as shown with Charm++ or Hadoop. An introduction to
the use of GPGPUs programming and possible integration methods in the grid infrastructure was
also covered in the workshop.

Acknowledgments

The authors acknowledge support of the European Commission FP7 program, under contract
number 261323 through the project EGI-InSPIRE (http://www.egi.eu/) and under contract
number 261611 through the project EMI (http://www.eu-emi.eu/)

References

[1] A.Bayucan, R. L. Henderson, C. Lesiak, B. Mann, T. Proett, and D. Tweten, Portable batch system:
External reference specification, Technical report, MRJ Technology Solutions, 1999.

[2] K. Dicheyv, S. Stork, R. Keller, E. Fernandez, MPI Support on the Grid, Computing and Informatics,
volume 27, pp. 213-222, 2008.

[3] European Grid Initiative (EGI) http://www.egi.eu/

[4] EGI Virtual Teams
https://wiki.egi.eu/wiki/Overview_of_Virtual_Team_projects

[S] M. Ellert et al., Advanced Resource Connector middleware for lightweight computational Grids,
Future Generation Computer Systems, volume 23, pp. 219-240, 2007.

[6] European Middleware Initiative (EMI) https://twiki.cern.ch/twiki/bin/view/EMI

[71 D. Erwin, UNICORE - A Grid Computing Environment, Lecture Notes in Computer Science, volume
2150, pp. 825-834, 2001.

[8] E. Fernandez, MPI Hands on Training, EGI User Forum, April 2011.

[9] E. Gabriel et al, Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation,
Lecture Notes in Computer Science, 3241, pp. 97-104, 2004.

[10] W. Gentzsch, Sun Grid Engine: towards creating a compute power grid, Proceedings of the first
IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 35-36, 2001.

[11] W. Gropp, MPICH2: A new start for MPI implementations, Proceedings of the 9th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pp. 7, 2002.

[12] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, volume 22(6), pp. 789-828, 1996.

[13] N.T. Karonis et al, MPICH-G2: A grid-enabled implementation of the message passing interface, J.
Parallel Distrib. Comput., volume 63(5), pp. 551-563, 2003.

[14] E. Laure et al., Programming the Grid using gLite, EGEE-PUB-2006-029, 2006.

[15] M. Litzkow, M. Livny, and M. Mutka, Condor - a hunter of idle workstations, Proceedings of the 8th
International Conference of Distributed Computing Systems, 1988.

11

Parallel Computing Workshop Alvaro Simon

[16]

[17]
[18]
[19]

(20]

[21]

[22]
(23]

[24]

[25]
[26]

J. Marco et al, The Interactive European Grid: Project Objectives and Achievements, Computing and
Informatics, volume 27, pp. 161-173, 2008.

MPI Virtual Team. https://wiki.egi.eu/wiki/VT_MPI_within_EGI
B. Schuller et al., EMI Execution Service Specification, v1.07, 2011.

J. M. Squyres, A component architecture for LAM/MPI, Proceedings of the 9th ACM SIGPLAN
symposium on Principles and practice of parallel programming, pp. 379-387, 2003.

J. Walsh et al., Message Passing Interface - Current Status and Future Developments, EGI Technical
Forum, 2010.

S. Zhou, Lsf: Load sharing in large-scale heterogeneous distributed systems, Proccedings of the
Workshop on Cluster Computing, 2002.

Hadoop On Demand http://hadoop.apache.org/common/docs/r0.17.0/hod.html

M. Scarpino, OpenCL in Action: How to accelerate graphics and computation Manning Publications
Co., ISBN 9781617290176, 2011

D. Kirk Programming Massively Parallel Processors: A Hands-on Approach Morgan Kaufmann
Publishers, ISBN 9780123814722, 2010

GNU Ocelot Homepage http://code.google.com/p/gpuocelot/

J. Fang, A.L. Varbanescu and H. Sips, A Comprehensive Performance Comparison of CUDA and
OpenCL, The 40-th International Conference on Parallel Processing (ICPP’11), Taipei, Taiwan.

12

