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For systems broken in pieces, an immediate observable ssz2bef the largest fragment. Despite
the apparent simplicity of this variable, one can extratfinite information about the correlations
present in the system, and even the mechanisms which ledstepécial fragment. The under-
lying idea is that the largest fragment is indeed very spebicause, during the history of its
formation, this fragment avoided (to some extent) proces$édragmentation and most of the
relevant correlations. However, to get the useful infoiorgtaverage values are not enough, and
one has to investigate in details the complete fluctuatidtiseolargest-fragment size, under the
form of its probability-distribution function. Focusingfe on principles and not on particular ap-
plications, we take two simple models of aggregation eximipicritical behavior (at-equilibrium
percolation and dynamical Smoluchowski equations), wevsénad discuss in the present work
the way the information is hidden in the largest-fragmestriiution. Moreover, the distribution
of the second largest fragment gives precise insights aheunechanisms which generated the
system. This approach provides a novel kind of data analysigh can be helpful when one has
only access to the final state of a system of fragments, asyitiaapen in nuclear collisions or in
explosion of hot atomic clusters.
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1. Introduction

In the N-body system, correlations reflect the interactions betwssticles. However, it may
happen that these quantities are not directly availablaerekperiments. In such a case, one has
to disentangle indirect information to obtain results alibe underlying correlations. A way to
do that — though barely used — is the detailed investigatfdheoprobability distribution function
of a relevant observable, such as the order parameter [A2h matter of fact, the logarithm of
the order-parameter distribution is nothing but the freergy of the system, which is known to
include all the relevant information about the correlasi¢d.

In the simplest example of the additive observable (e.gnthgnetization), the Central Limit
Theorem assures that the corresponding probability bigtan must be a gaussian function pro-
vided correlations be unessential [4]. Therefore, anyatimn to the gaussian shape results, in this
case, from correlations. We describe below how to use aaindiba in the less-known example of
the extremal variable, which is the usual case when systenade of fragments.

2. The extremal variable

Percolation is the paradigm of systems broken in pieces fopharticular phase transition
occurs between two phases: the ordered phase and the disbplgase. These two phases are
respectively characterized by the occurrence or not of it giecroscopic piece, coexisting with
an ensemble of microscopic fragments. The size of the bidgegment appears to be the natural
order parameter in this case [6]. 4fdenotes the size of the fragment numbeasnd there aren
fragments in the system, the order parameggyy, is then defined as:

Smax = Max s . (2.1)

The numbemiis also called the multiplicity of the system.

When there is no correlations in the system, the fragmestindependent one each other. It
means that the fragment sizess, are independent random variables with a common distabuti
function, f(s), which reflects the manner the fragments have been built.n,Tie probability
distribution of the extremal variablg,ais given by a Limit Theorem, essentially due to Gnedenko
in its modern form [7]. According to special features of thgtribution functionf(s), the random
variable snax for a large number of fragments, is distributed followipgsmax), which must be
either the Gumbel distribution, or the Fréchet distribaitto the Weibull distribution [8]. No other
distribution can appear for the extremal variable in theouratated system.

For brevity, we will consider below the Gumbel distributjcas it is the most general case,
though the two other cases should be worth detailed inasiiy

2.1 The Limit Theorem for extremal variables (Gumbel case)

Suppose that the multiplicityn, is a large constant number, and the following condition on
the fragment-size distributiorf,(s), is asymptotically fulfilled [9]:
df(s)

f(s)+W/:f(s’)dé—>0 when's — oo, 2.2)
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then, there exist two quantities, and by, > 0, depending on the multiplicity and on some fea-
tures of the functiorf (s) (we shall be more precise in the next section), for which tredability
distribution ¢, of the extremal variablgyax Writes:

@1(Smax) = b—efzreizl ; (2.3)
m
7 = Smax — 8m (2.4)
Brm

and moreover, the coefficiends, andb,, are such that [10]:

% 1 1
f(Sds == ; bp=——. 2.5
s = = s (2.5)

The demonstration of this theorem is straightforward tistarfrom the relation: profsnax <
S| = (prob[s < S])™, which expresses that the condition &« to be smaller than a valug is
that all the fragment sizes are smaller tlsan

The normalized double-exponential function (2.3) is ther®al distribution [11]. This func-
tion behaves as a simple exponential functienexp(—smax/bm), for the large positive values
of the argument, but decreases sharply as a double-exgarfemiction, ~ exp(— exp(— (Smax—
am)/bm)) on the other side, whesax— am < 0.

2.2 Examples of distributions belonging to the domain of attaction of the Gumbel
distribution

Here is listed a couple of distributioniys) which meet the condition (2.2), and the corre-
sponding attraction coefficiengs, andby,.

¢ the exponential distribution:

f(s) = % ~S/% (2.6)
an = Slnm ; bn=% (2.7)
e the gaussian distribution:
1 2
f(s) = ——— e (W2 (2.8)
V25
am = SvV2Inm ; by=%/v2Inm (2.9

According to the condition (2.2), only the largdail of f(s) matters in the definition of the
domain of attraction, such that it is sufficient that the s (2.6) or (2.8) arasymptotically
true for the conclusions of the Limit Theorem be valid. Ttaghe case for most of the cut-offs
[12], hence the ubiquity of the Gumbel distribution in theypias of extremal variables.

One should note on these simple examples, the particulanimgeaf the ratios/sy. Actually,
if one believes the exponential decrease as the most plawsitoff, it appears thdi,, is a measure
of the correlation size [13} in Equ.(2.6)).



about the largest-fragment distribution Robert Botet

2.3 Role of the multiplicity fluctuations

In the real situations, there is no reason why the multigglishould be a constant number.
However, a simple argument can be given to prove the stalbilithe distribution when gaussian
fluctuations ofm are considered. Let us consider the binomial distributibthe multiplicity, that
is:

M m M—m
P[m| = <m> p"(1-p) (2.10)
with the constant probabilityp, and the maximum multiplicityM. The average value of the
multiplicity is (m) = pM. Then, the average of the cumulative probability distigrutfunction
prob[smax < ] over random realizations of, is such that:

prob[smax < ] = % P[m](prob[s < §])™ (2.11)
m=0
~ (prob[s< §])PM (2.12)

leading again to the Gumbel distribution following the sdine as for the constant: case. Con-
sequently, the Limit Theorem for the extremal variabledsatientically true when the multiplicity
is gaussian-fluctuating, with the replacement— (m).

3. The percolation model

Let us come back to the percolation model. This is a geona¢tmodel on a lattice, in which
the system is divided in clusters intra-connected with lspeéich bond appearing with a constant
probability, sayp [5]. There is no time in the model, that is the system is exquetd be at the
thermodynamic equilibrium [6]. Whep is smaller than a threshold;, all the clusters remain
microscopic in size (in the sensésmax) /N — 0, when the siz&\ of the lattice tends te), while
a macroscopic clustergnax) is a finite fraction of the total mads) appears whemp > p. and
spans the lattice. The threshgbd= pc is the critical point for the infinite system. In this model,
the natural order parameter is the probability for a givéa & belong to the spanning cluster. Its
alternative form issmax/N — ratio between the size of the largest cluster and the sitreedéttice —,
since the percolating cluster is almost surely the lardester in the system. We discuss hereafter
a few results known about the distribution of the order pai@min the percolation model.

3.1 percolation — the disordered phase < pc

Whenp < pe, the distribution of the largest-cluster size was provefbliow a Gumbel distri-
bution [14, 15]. The proof is either numerical or based onrér®rmalization group theory. This
result is consistent with the general theory explained aparhich states that the distribution of the
extremal variable is the Gumbel distribution as long as tireetations are irrelevant.

It is the place here to give details about what ‘irrelevant@ations’ means exactly. Indeed,
correlations are present in the system for any finite valup, @nd a correlation lengtt€ (p) is
associated. Below the critical threshofd,p) < . As the critical state corresponds to appearance
of a cluster spanning the maximum system lergfthe lattice diameter), correlations are irrelevant
as long as the conditior€ (p) < L is realized. On the other hand, this condition defines aquaati
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value, p,, through the implicit equatiod (p,) = L. In other words,p, corresponds to the value
of p for which the correlation length is comparable to the systiameter. Actually, the interval
[Ps, Pc] forms the lower part of a domain ip, called the pseudo-critical domain [16]. In the
pseudo-critical domain, the finite system resembles thie@rinfinite system, in the sense that the
correlation length exceeds the system size.

3.2 percolation — the critical phasep = pc

The system undergoes a continuous phase transition fohthshold valuep = p.. One
knows that the universality class of the system can be ctaiaed by the values of two critical
exponents [17]. For the percolation model, these exporaetgither known numerically (finite
space dimensior 2) or exactly, in the mean-field case and for the 2-dimensispace.

Little is known about the distribution of the order paraménehe critical percolation network,
except a remarkable exact result in the mean-field case [b8eed, for the percolation on the
Bethe lattice ap = pc, with pc the critical value of the probabilitp for the infinite lattice, it was
shown that the distribution of the order parametggx/N, is the Kolmogorov-Smirnov distribution
[19], conveniently written in terms of its moment-genargtfunction (Laplace transform):

Al = o 11 T2) 61)
cn ~ In?N (3.2)

® _ et
/0 e hgiz= o (3.3)

The functiong, behaves as a simple exponential functierexp(—smax/cn ), for the large positive
values of the argument, and decreases sharply as the foneti@xp(—cn/Smax), on the other
side wheresynax — 0. This special distribution does not appear to be the limgame way, of the
Gumbel distribution [20].

3.3 percolation — the ordered phase > pc

The ordered phase is characterized by the giant clustensgathe entire lattice, and cor-
relations going exponentially fast to their limit value.nfiliarly to the disordered case, one can
define a special valup*, such that:&(p*) = L. This value characterizes the upper limit of the
pseudo-critical domain.

However, the situation is quite different when comparechwlite disordered case. One can
catch the difference with the following argument: if we metg/o independent finite systems, say:
A andB, with same sizéN, same value op > p;, and respective order parametessax(A) and
Smax(B), the value of the order parameter of the resulting systenB is Smax(AUB) = (Snax(A) +
smax(B))/2N, because the spanning cluster of the systguins the spanning cluster of the system
B almost surely. Then, the order parameter is essentiallgdifige nature, and no more of extremal
nature. It results, in this case, in thaussiardistribution of the order parameter.

4. The critical mean-field aggregation model

The percolation model is a geometrical at-equilibrium egstwhich exhibits a continuous
phase transition of definite universality class. In somesdfor example: the mean-field class)
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there exists a critical dynamical model which belongs todhme universality class. The model
is called the Smoluchowski aggregation model [21], sinae lihsic equations were written by
Smoluchowski one century ago [22], to investigate the dyinarmf coalescence of droplets. The
equations write:

N
C:j—o: = %iﬂz_kKOijCiCj — i;KoikciCk (4.2)
wherecy is the concentration of droplets of volurkeandKgij represents the coalescence cross-
section of two droplets of respective volumieand j. N is the total volume of the matter in the
system, and the volume of a droplet cannot be smaller than 1.

Starting from appropriate initial conditions, tiNcoupled equations (4.1) describe the evo-
lution of the droplets population with the timte One then defines the order parameter as the
reduced largest droplet sizgyax/N. This quantity exhibits a critical behavior for the partau
time t; = (Kozkkzck(O))*l, named the gel time. More precisely, M« Smax/N is finite only
whent > t; and a macroscopic phase appears, otherwise this quantitshes and the system is
made of small clusters.

The critical exponents are known exactly for this model. yTbeincide with the analogous
exponents of the mean-field percolation model, then bothetsoakre expected to belong to the
same universality class. The probability distributiondtion of the order parameter in the Smolu-
chowski model, is not known exactly. However, on the basiexténsive numerical simulations,
it was proposed that thg,a-distribution function is the Kolmogorov-Smirnov distuition, the
same as for the mean-field critical percolation model [18hrédver, the distribution is definitely
a Gumbel distribution in the disordered phase.

This aggregation model is convenient for numerical sinmiofest That way, this model is able
to provide detailed information about features which areawailable otherwise. We exemplify
below this ability by investigating the probability didittion of the order parameter in the pseudo-
critical domainit,(N),t*(N)], wheret,(N) < t; andt*(N) > t; are the lower and upper times for
which the correlation size isl. Precise estimation of the limits of the pseudo-criticamam is
not easy to do, as it requires analysis of genuine correldtioctions. However, one can propose
rough estimations using behaviors of critical quantitiest us take the example of the standard
deviation, o, of the largest cluster in the systera. must diverge at the gel time for the infinite
system. For the finite systems,is expected to reach a maximum for a definite value of the time
close tot;, moreover the maximum must increase with the size of theesystThe shape ofr
versus the time is shown on the Figure 1 for a finite systemzafldéi= 512. Indeed, the behavior
exhibits sharp maximum for the tim¢t. ~ 1.3. If we propose that the value ofis ‘large’ when
it is above 10% of its maximum value, then two times can be ddfthis way, and their values are
respectivelyt, = 0.6t; andt* = 2.3t..

4.1 Guess for fit of the order-parameter distribution function

The probability that the system state exhibits the featofethe disordered stata.€. the
Gumbel distribution) depends on the distance to the gel.titmeust be 1 whem <t,, and 0 when
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Figure 1: Standard-deviationg, of the largest fragment size versus titdor the finite Smoluchowski
aggregation model. The size of the systenNis- 512 and 18 independent numerical experiments were
used. The maximum value af is found to beoyax ~ 36 at the timg = 1.3t.. The bounds of the pseudo-
critical domain can be roughly estimated as the times wher@alues obr are small enough. Here we took
the criteriono = 0.10max. It results in the values = 0.6t. andt* = 2.3t.. The vertical line is the critical
time for the infinite system.

t > t*. But in the pseudo-critical domain of time, the finite-syststate experiences fluctuations
large enough to correspond to either the disordered or tthered phase. This behavior, due to
the finite character of the system, must not be confused wjthage coexistence. We are here
dealing with state-fluctuations from sample to sample, avidphase-fluctuations inside a given
system. This suggests that a natural fit for the effectig probability distribution function, is the
sumof a Gumbel distribution (disordered state) and of a ganddiistribution (ordered state), with
respective weights being function of the distaheet..

Note that for the finite systems, the special critical disttion at the gel time is not expected

to play an important role, as the probability for the systerafipear exactly at this point is infinitely
small.

4.2 Results about the order-parameter distribution function in the pseudo-critical domain

We performed numerical simulations of the Smoluchowskiagigus (4.1) for finite systems,
and analyze the averagsgax-distribution as sums of weighted Gumbel + Gauss distransti

To realize that task, we estimated the five unknown paramsédgeevery numerical distribution
(two parameters for each partial distribution and the redaweight of the Gumbel distribution to
the gaussian distribution) using Monte-Caxl&-minimization.

o t, <I <1,

In the pre-gelation regime, one should expect the Gumbgilalion to be the dominant
part. This is clear on the Figure 2 (a), which correspondkdditnet = 0.4t;, laying slightly
outside the boundary of the pseudo-critical domain. Thégldity distribution is almost
perfectly fitted with a Gumbel distribution.

On the later time& = 0.8t (Figure 2 (b)), the role of the gaussian distribution beceriear
as this part grows up progressively in the vicinity of the-timle.
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Figure 2: Probability distribution of the order parametgyax for the Smoluchowski aggregation model
(black circles). Each figure corresponds to® 18dependent systems of sidé= 512. The probability
distribution is decomposed into the sum of a Gumbel distigiou(dashed line) and a gaussian distribution
(gray area). The black continuous line is the sum of the Guiarikof the gaussian distributions to compare
with the distribution (black circles) given by the numetisinulations. Figure 2 (a) corresponds to the time
t = 0.4t;.. The gaussian component is barely seen. Figure 2 (b) camdspto the time = 0.8t.. As the
system approaches the critical time, the weight of the gans®mponent increases.

[ ] t:tc

At the critical time, thesya-distribution is expected to be much more complicated. Hare

it is still well approximated with the sum of a Gumbel and ofaugsian distribution (see
Figure 3). Remarkably, one finds that the weights assoctatedch distribution are fairly
equal (.e. the respective areas of the curves are similar). We can tiggest, in the present
case, that the critical point is characterized by the etyuafithe respective weights of the
Gumbel and gaussian contributions. This point will be dised below.

® tc<t<t*

When the system state is in the post-gelation phase, onetexie gaussian contribution
to be the most important part of the order-parameter digich. This is exemplified on
the Figure 4, on which the gaussian part (gray area) is glelminant. As expected, the
Gumbel part disappears progressively when the time movag &am the gel time (Figure

4 (e)).
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Figure 3: Same analysis as for the Figure 2, foP 1l8dependent systems of sike= 512 at the gel-time of
the infinite system, that is:=t.. In this special case, the area of the Gumbel distributi@astidd line) is
found to be equal to the area of the gaussian distributicay(grea). Then, both distributions contribute to
the smax-distribution with equal weight.

4.3 Conclusions from the numerical study

The numerical results suggest a general scenario aboubthedations in the system with the
extremal order parameter. Namely, if we expand the ordexrpeater distributiong (Snax) as:

@1(Smax) ~ Woufeu(Smax) +Weafca(Smax) (4.2)

wherefg, and fg, are respectively a Gumbel and a gaussian distribution, themquantity:

WGa — Wau

= 4.3)
Wga+ Wau

n
is a measure of the distance to the critical point, or, edemtby, n is directly related to the value
of the correlation size.

According to the general argument given above and the sesulthe Smoluchowski aggre-
gation model — as exemplified on the Figure 5 —, one can propheséollowing features for the
various values ofj for afinite system:

e 11 = 1 when the finite-system state is in the ordered phase
e N = —1 when the finite-system state is in the disordered phase
e 1 = 0 coincides with the critical point for the infinite system

e —1< n < 1characterizes the pseudo-critical domain, where theledions play a paramount
role in the system state

Note that the particular valug = 0 seems to appear for the critical point of the infinite system
(in the Figure 5, it occurs faor/t; = 1), and not for the point where the fluctuations of the order
parameter are the largest (in the Figure 5, it should bgat= 1.3, as shown on Figure 1).
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Figure 4: Same analysis as for the Figure 2, foP iidependent systems of sike= 512 in the post-gelation
domaint > t¢. Figure 4 (d) corresponds to the tirhe- 1.4t;. Figure 4 (e) corresponds to the time 1.6t..
As the time goes, the weight of the Gumbel component (dasinegdecreases.

4.4 robustness of the analysis

Various tests were performed to check how robust is the temmalysis. For example, we
added a fragmentation term to the Smoluchowski aggregatijoations (4.1). Generally, it results
in a saturation of the standard deviationof the largest fragment when steady-state is reached,
that is for timet — c. However, the critical behavior at the finite time is kept whhbe initial
conditions are regular (e.g. monodisperse system of fratgraf size 1 ; this corresponds to the
initial condition as the extreme disordered state). Thenphserve that the analysis in the sum of
a Gumbel and of a gaussian distributions, stays the samés atililable to detect the critical point
of the infinite matter [23]. In the case of aggregation/fragimation process, detailed balanced can
be essential [24], but for the present analysis, no effed madiceable when choosing a system
in which detailed balance was not realized. Also the Smaseatki kernelKgij was changed in
Koi%/3j2/3, that corresponds to different coalescence cross-sectimr still exhibits a critical gel
time. In this case too, the decomposition in sum of two stechdéstributions worked well in the
pseudo-critical domain around the gel time.

5. how to get information about the real fragmentation process

In the analysis above, we were interested in detecting alpessitical point of the infinite
system from the overall shape of the order-parameter liigioin. A more subtle point is to know

10
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Figure 5: Sketch of then values versus the reduced timé. for the Smoluchowski aggregation model
(black circles). Whem = —1, the order parameter distributiop,(Snax), is the Gumbel distribution. When
n =1, @ is the gaussian distribution. In this model, the finite-egsttate goes gently from Gumbel-like to
Gauss-like, passing through the particular vajue O at the critical timet /t. = 1. The bold line in the shape
of a step function passing discontinuously from the valdeto the valuet+1 att/tc = 1, is the expected
behavior ofny for the infinite system.

something about the mechanisms which leads to the fragmemsnciple, one can obtain precise
information investigating the second largest fragmsent,ndeed, if the systems created instanta-
neously all the fragments (a process called ‘multifragmgon’ [26]), the distribution of thé"

largest fragmentsy, in the disordered phase should be [25]:
1 1 —kz—e %
— 5.1
K—1)! bm* ®-1)
S — am
Bm

() =

z = (5.2)
in which the scaling coefficienta,, and by, are the sameas for the largest-fragment case, that is
(2.5).

Another option for the mechanism is that fragmentation cestep by step: the system splits
into several fragments, then each of the fragments breaks sgveral pieces and so on. After
steps of successive fragmentations, the largest fragmeheisystem will be probably the result
of the fragmentation of the largest piece in the step1l. Then the distribution ofnax Will be a
Gumbel distribution, with the coefficienég, andb,, corresponding to the parameters of the parent-
piece. Nothing would change between the scenario of thefragitnentation, and the scenario of
the sequential fragmentation [26]. However, the distidnutof the second largest fragment is
different, because this fragment is almost surely the &rfjagment of its own parent-piece. Then,
one expects the distribution @b to be also a Gumbel distribution with different values of the
parametersqm, bm. More precisely, the two options will write respectively:

bt (Snax) = € 2 ¢ ;. bn@a(s) =€ 2272  (multifragmentation) (5.3)
z1 = (Smax—am)/bm ; 2= (2 —am)/bm (5.4)

bt (Snax) = € 2" ;. bn@a(2) —e% €2 (sequentia-fragmentation)  (5.5)
21 = (Smax—am)/bm ; % = (2 —ay) /b (5.6)

11
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There are two differences. One is in the coefficient 2 in the& Bxponential function of they
function (note that this coefficient is in principle easy ttatt as an extra factor 2 in the slope
of Ing(s) versuss; for the large values of,, when plotted in the scaled varialdg). The other
difference is about the values of the couple of parametgrb/, (for s, variable) compared with
am, by (for the snax variable).

Generally, it is difficult to obtain precise probability ttibution of the third or smaller frag-
ments, but if information is available, it can be used the esavay to check more carefully the
aggregation/fragmentation scenario.

6. Conclusion

Finite systems cannot exhibit critical phenomena, thoughietations play a relevant role
within an extended range of the parameter controlling thstesy state. This range of values is
called the pseudo-critical domain, and can be defined mlgcis

In the present work, we studied the case of systems wherenthieawailable information is
about fluctuations of the extremal order-parameter. Twiicatimodels in the same universality
class, are discussed in this context: the percolation —twisiat-equilibrium model —, and the
Smoluchowski aggregation model — which exhibits a dynahpbase transition —. Both models
give a novel coherent insight about the structure of thergpdeameter distribution function in the
pseudo-critical domain. Because the system is finite, thiblei system state appears to be some-
times in the disordered state, and sometimes in the ordéagel svhen the control parameter is
close to the critical point. Consequently, the effectivéansparameter distribution is well fitted by
a weighted sum of a Gumbel distribution (characteristichefdisordered state) and of a gaussian
distribution (characteristic of the ordered state). Thepeeterm — which is essentially the relative
ratio between the Gumbel and the gaussian contributiorssprpposed to measure the distance of
the average system state to the critical state of the infiiyiskeem. This new parameter can easily
be calculated from the order-parameter distribution offihiée system, and its proper value gives
a definite information about the strength of the correlaianting in the system. Moreover, one of
the observable parametets,] gives an estimation of the actual correlation size in tretesy.

When one can have access at the same time to the largest aedtmel largest fragment, then,
the probability distribution of the second largest fragimgimes quantitative information about the
mechanisms which produced the fragments.
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