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Where are correlations hidden in the distribution of
the largest fragment?
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For systems broken in pieces, an immediate observable is thesize of the largest fragment. Despite

the apparent simplicity of this variable, one can extract definite information about the correlations

present in the system, and even the mechanisms which led to this special fragment. The under-

lying idea is that the largest fragment is indeed very special, because, during the history of its

formation, this fragment avoided (to some extent) processes of fragmentation and most of the

relevant correlations. However, to get the useful information, average values are not enough, and

one has to investigate in details the complete fluctuations of the largest-fragment size, under the

form of its probability-distribution function. Focusing here on principles and not on particular ap-

plications, we take two simple models of aggregation exhibiting critical behavior (at-equilibrium

percolation and dynamical Smoluchowski equations), we show and discuss in the present work

the way the information is hidden in the largest-fragment distribution. Moreover, the distribution

of the second largest fragment gives precise insights aboutthe mechanisms which generated the

system. This approach provides a novel kind of data analysis, which can be helpful when one has

only access to the final state of a system of fragments, as it may happen in nuclear collisions or in

explosion of hot atomic clusters.
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about the largest-fragment distribution Robert Botet

1. Introduction

In theN-body system, correlations reflect the interactions between particles. However, it may
happen that these quantities are not directly available in the experiments. In such a case, one has
to disentangle indirect information to obtain results about the underlying correlations. A way to
do that – though barely used – is the detailed investigation of the probability distribution function
of a relevant observable, such as the order parameter [1, 2].As a matter of fact, the logarithm of
the order-parameter distribution is nothing but the free energy of the system, which is known to
include all the relevant information about the correlations [3].

In the simplest example of the additive observable (e.g. themagnetization), the Central Limit
Theorem assures that the corresponding probability distribution must be a gaussian function pro-
vided correlations be unessential [4]. Therefore, any deviation to the gaussian shape results, in this
case, from correlations. We describe below how to use a similar idea in the less-known example of
the extremal variable, which is the usual case when system ismade of fragments.

2. The extremal variable

Percolation is the paradigm of systems broken in pieces [5].A particular phase transition
occurs between two phases: the ordered phase and the disordered phase. These two phases are
respectively characterized by the occurrence or not of a giant macroscopic piece, coexisting with
an ensemble of microscopic fragments. The size of the biggest fragment appears to be the natural
order parameter in this case [6]. Ifsi denotes the size of the fragment numberi, and there arem
fragments in the system, the order parameter,smax, is then defined as:

smax = max
i=1,···,m

si . (2.1)

The numberm is also called the multiplicity of the system.

When there is no correlations in the system, the fragments are independent one each other. It
means that the fragment sizes,si , are independent random variables with a common distribution
function, f (s), which reflects the manner the fragments have been built. Then, the probability
distribution of the extremal variablesmax is given by a Limit Theorem, essentially due to Gnedenko
in its modern form [7]. According to special features of the distribution function f (s), the random
variablesmax for a large number of fragments, is distributed followingφ(smax), which must be
either the Gumbel distribution, or the Fréchet distribution or the Weibull distribution [8]. No other
distribution can appear for the extremal variable in the uncorrelated system.

For brevity, we will consider below the Gumbel distribution, as it is the most general case,
though the two other cases should be worth detailed investigation.

2.1 The Limit Theorem for extremal variables (Gumbel case)

Suppose that the multiplicity,m, is a large constant number, and the following condition on
the fragment-size distribution,f (s), is asymptotically fulfilled [9]:

f (s)+
d f(s)

ds

∫ ∞

s
f (s′)ds′ → 0 when s→ ∞ , (2.2)
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then, there exist two quantitiesam andbm > 0, depending on the multiplicity and on some fea-
tures of the functionf (s) (we shall be more precise in the next section), for which the probability
distributionφ1 of the extremal variablesmax writes:

φ1(smax) =
1

bm
e−z1−e−z1

, (2.3)

z1 =
smax−am

bm
(2.4)

and moreover, the coefficientsam andbm are such that [10]:
∫ ∞

am

f (s′)ds′ =
1
m

; bm =
1

m f(am)
. (2.5)

The demonstration of this theorem is straightforward, starting from the relation: prob[smax≤
s′] = (prob[s≤ s′])m, which expresses that the condition forsmax to be smaller than a values′ is
that all the fragment sizes are smaller thans′.

The normalized double-exponential function (2.3) is the Gumbel distribution [11]. This func-
tion behaves as a simple exponential function,∼ exp(−smax/bm), for the large positive values
of the argument, but decreases sharply as a double-exponential function,∼ exp(−exp(−(smax−
am)/bm)) on the other side, whensmax−am ≪ 0.

2.2 Examples of distributions belonging to the domain of attraction of the Gumbel
distribution

Here is listed a couple of distributionsf (s) which meet the condition (2.2), and the corre-
sponding attraction coefficientsam andbm.

• the exponential distribution:

f (s) =
1
s0

e−s/s0 (2.6)

am = s0 lnm ; bm = s0 (2.7)

• the gaussian distribution:

f (s) =
1

√

2πs2
0

e−(s−µ)2/2s2
0 (2.8)

am = s0

√
2lnm ; bm = s0/

√
2lnm (2.9)

According to the condition (2.2), only the large-s tail of f (s) matters in the definition of the
domain of attraction, such that it is sufficient that the behaviors (2.6) or (2.8) areasymptotically
true for the conclusions of the Limit Theorem be valid. This is the case for most of the cut-offs
[12], hence the ubiquity of the Gumbel distribution in the physics of extremal variables.

One should note on these simple examples, the particular meaning of the ratios/s0. Actually,
if one believes the exponential decrease as the most plausible cut-off, it appears thatbm is a measure
of the correlation size [13] (s0 in Equ.(2.6)).
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2.3 Role of the multiplicity fluctuations

In the real situations, there is no reason why the multiplicity should be a constant number.
However, a simple argument can be given to prove the stability of the distribution when gaussian
fluctuations ofm are considered. Let us consider the binomial distribution of the multiplicity, that
is:

P[m] =

(

M
m

)

pm(1− p)M−m (2.10)

with the constant probability,p, and the maximum multiplicity,M. The average value of the
multiplicity is 〈m〉 = pM. Then, the average of the cumulative probability distribution function
prob[smax≤ s′] over random realizations ofm, is such that:

prob[smax≤ s′] =
M

∑
m=0

P[m](prob[s≤ s′])m (2.11)

≃ (prob[s≤ s′])pM (2.12)

leading again to the Gumbel distribution following the sameline as for the constant-m case. Con-
sequently, the Limit Theorem for the extremal variable, holds identically true when the multiplicity
is gaussian-fluctuating, with the replacement:m→ 〈m〉.

3. The percolation model

Let us come back to the percolation model. This is a geometrical model on a lattice, in which
the system is divided in clusters intra-connected with bonds, each bond appearing with a constant
probability, sayp [5]. There is no time in the model, that is the system is expected to be at the
thermodynamic equilibrium [6]. Whenp is smaller than a thresholdpc, all the clusters remain
microscopic in size (in the sense:〈smax〉/N → 0, when the sizeN of the lattice tends to∞), while
a macroscopic cluster (〈smax〉 is a finite fraction of the total massN) appears whenp > pc and
spans the lattice. The thresholdp = pc is the critical point for the infinite system. In this model,
the natural order parameter is the probability for a given site to belong to the spanning cluster. Its
alternative form is:smax/N – ratio between the size of the largest cluster and the size ofthe lattice –,
since the percolating cluster is almost surely the largest cluster in the system. We discuss hereafter
a few results known about the distribution of the order parameter in the percolation model.

3.1 percolation – the disordered phasep < pc

Whenp < pc, the distribution of the largest-cluster size was proved tofollow a Gumbel distri-
bution [14, 15]. The proof is either numerical or based on therenormalization group theory. This
result is consistent with the general theory explained above, which states that the distribution of the
extremal variable is the Gumbel distribution as long as the correlations are irrelevant.

It is the place here to give details about what ‘irrelevant correlations’ means exactly. Indeed,
correlations are present in the system for any finite value ofp, and a correlation length,ξ (p) is
associated. Below the critical threshold,ξ (p) < ∞. As the critical state corresponds to appearance
of a cluster spanning the maximum system lengthL (the lattice diameter), correlations are irrelevant
as long as the condition:ξ (p) < L is realized. On the other hand, this condition defines a particular
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value, p⋆, through the implicit equationξ (p⋆) = L. In other words,p⋆ corresponds to the value
of p for which the correlation length is comparable to the systemdiameter. Actually, the interval
[p⋆, pc] forms the lower part of a domain inp, called the pseudo-critical domain [16]. In the
pseudo-critical domain, the finite system resembles the critical infinite system, in the sense that the
correlation length exceeds the system size.

3.2 percolation – the critical phasep = pc

The system undergoes a continuous phase transition for the threshold valuep = pc. One
knows that the universality class of the system can be characterized by the values of two critical
exponents [17]. For the percolation model, these exponentsare either known numerically (finite
space dimension> 2) or exactly, in the mean-field case and for the 2-dimensional space.

Little is known about the distribution of the order parameter in the critical percolation network,
except a remarkable exact result in the mean-field case [18].Indeed, for the percolation on the
Bethe lattice atp = pc, with pc the critical value of the probabilityp for the infinite lattice, it was
shown that the distribution of the order parameter,smax/N, is the Kolmogorov-Smirnov distribution
[19], conveniently written in terms of its moment-generating function (Laplace transform):

φ1(smax) =
1
cN

f1

(

smax

cN

)

(3.1)

cN ∼ ln2N (3.2)
∫ ∞

0
e−tz f1(z)dz =

√
6t

sinh
√

6t
(3.3)

The functionφ1 behaves as a simple exponential function,∼ exp(−smax/cN), for the large positive
values of the argument, and decreases sharply as the function: ∼ exp(−cN/smax), on the other
side wheresmax→ 0. This special distribution does not appear to be the limit in some way, of the
Gumbel distribution [20].

3.3 percolation – the ordered phasep > pc

The ordered phase is characterized by the giant cluster spanning the entire lattice, and cor-
relations going exponentially fast to their limit value. Similarly to the disordered case, one can
define a special valuep⋆, such that:ξ (p⋆) = L. This value characterizes the upper limit of the
pseudo-critical domain.

However, the situation is quite different when compared with the disordered case. One can
catch the difference with the following argument: if we merge two independent finite systems, say:
A andB, with same sizeN, same value ofp > pc, and respective order parameters:smax(A) and
smax(B), the value of the order parameter of the resulting systemA∪B is smax(A∪B) = (smax(A)+

smax(B))/2N, because the spanning cluster of the systemA joins the spanning cluster of the system
B almost surely. Then, the order parameter is essentially of additive nature, and no more of extremal
nature. It results, in this case, in thegaussiandistribution of the order parameter.

4. The critical mean-field aggregation model

The percolation model is a geometrical at-equilibrium system which exhibits a continuous
phase transition of definite universality class. In some cases (for example: the mean-field class)
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there exists a critical dynamical model which belongs to thesame universality class. The model
is called the Smoluchowski aggregation model [21], since the basic equations were written by
Smoluchowski one century ago [22], to investigate the dynamics of coalescence of droplets. The
equations write:

dck

dt
=

1
2 ∑

i+ j=k

K0i jc ic j −
N

∑
i=1

K0ikcick (4.1)

whereck is the concentration of droplets of volumek, andK0i j represents the coalescence cross-
section of two droplets of respective volumesi and j. N is the total volume of the matter in the
system, and the volume of a droplet cannot be smaller than 1.

Starting from appropriate initial conditions, theN coupled equations (4.1) describe the evo-
lution of the droplets population with the timet. One then defines the order parameter as the
reduced largest droplet size,smax/N. This quantity exhibits a critical behavior for the particular
time tc = (K0∑k k2ck(0))−1, named the gel time. More precisely, limN→∞ smax/N is finite only
whent > tc and a macroscopic phase appears, otherwise this quantity vanishes and the system is
made of small clusters.

The critical exponents are known exactly for this model. They coincide with the analogous
exponents of the mean-field percolation model, then both models are expected to belong to the
same universality class. The probability distribution function of the order parameter in the Smolu-
chowski model, is not known exactly. However, on the basis ofextensive numerical simulations,
it was proposed that thesmax-distribution function is the Kolmogorov-Smirnov distribution, the
same as for the mean-field critical percolation model [18]. Moreover, the distribution is definitely
a Gumbel distribution in the disordered phase.

This aggregation model is convenient for numerical simulations. That way, this model is able
to provide detailed information about features which are not available otherwise. We exemplify
below this ability by investigating the probability distribution of the order parameter in the pseudo-
critical domain[t⋆(N), t⋆(N)], wheret⋆(N) < tc andt⋆(N) > tc are the lower and upper times for
which the correlation size isN. Precise estimation of the limits of the pseudo-critical domain is
not easy to do, as it requires analysis of genuine correlation functions. However, one can propose
rough estimations using behaviors of critical quantities.Let us take the example of the standard
deviation,σ , of the largest cluster in the system.σ must diverge at the gel time for the infinite
system. For the finite systems,σ is expected to reach a maximum for a definite value of the time
close totc, moreover the maximum must increase with the size of the system. The shape ofσ
versus the time is shown on the Figure 1 for a finite system of sizeN = 512. Indeed, the behavior
exhibits sharp maximum for the timet/tc ≃ 1.3. If we propose that the value ofσ is ‘large’ when
it is above 10% of its maximum value, then two times can be defined this way, and their values are
respectivelyt⋆ = 0.6tc andt⋆ = 2.3tc.

4.1 Guess for fit of the order-parameter distribution function

The probability that the system state exhibits the featuresof the disordered state (i.e. the
Gumbel distribution) depends on the distance to the gel time. It must be 1 whent ≤ t⋆, and 0 when

6
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Figure 1: Standard-deviation,σ , of the largest fragment size versus timet, for the finite Smoluchowski
aggregation model. The size of the system isN = 512 and 105 independent numerical experiments were
used. The maximum value ofσ is found to beσmax≃ 36 at the timet = 1.3tc. The bounds of the pseudo-
critical domain can be roughly estimated as the times where the values ofσ are small enough. Here we took
the criterionσ = 0.1σmax. It results in the valuest⋆ = 0.6tc andt⋆ = 2.3tc. The vertical line is the critical
time for the infinite system.

t ≥ t⋆. But in the pseudo-critical domain of time, the finite-system state experiences fluctuations
large enough to correspond to either the disordered or the ordered phase. This behavior, due to
the finite character of the system, must not be confused with aphase coexistence. We are here
dealing with state-fluctuations from sample to sample, and not phase-fluctuations inside a given
system. This suggests that a natural fit for the effectivesmax probability distribution function, is the
sumof a Gumbel distribution (disordered state) and of a gaussian distribution (ordered state), with
respective weights being function of the distancet − tc.

Note that for the finite systems, the special critical distribution at the gel time is not expected
to play an important role, as the probability for the system to appear exactly at this point is infinitely
small.

4.2 Results about the order-parameter distribution function in the pseudo-critical domain

We performed numerical simulations of the Smoluchowski equations (4.1) for finite systems,
and analyze the averagedsmax-distribution as sums of weighted Gumbel + Gauss distributions.

To realize that task, we estimated the five unknown parameters for every numerical distribution
(two parameters for each partial distribution and the relative weight of the Gumbel distribution to
the gaussian distribution) using Monte-Carloχ2-minimization.

• t⋆ < t < tc

In the pre-gelation regime, one should expect the Gumbel distribution to be the dominant
part. This is clear on the Figure 2 (a), which corresponds to the timet = 0.4tc, laying slightly
outside the boundary of the pseudo-critical domain. The probability distribution is almost
perfectly fitted with a Gumbel distribution.

On the later timet = 0.8tc (Figure 2 (b)), the role of the gaussian distribution becomes clear
as this part grows up progressively in the vicinity of the gel-time.

7
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Figure 2: Probability distribution of the order parametersmax for the Smoluchowski aggregation model
(black circles). Each figure corresponds to 105 independent systems of sizeN = 512. The probability
distribution is decomposed into the sum of a Gumbel distribution (dashed line) and a gaussian distribution
(gray area). The black continuous line is the sum of the Gumbel and of the gaussian distributions to compare
with the distribution (black circles) given by the numerical simulations. Figure 2 (a) corresponds to the time
t = 0.4tc. The gaussian component is barely seen. Figure 2 (b) corresponds to the timet = 0.8tc. As the
system approaches the critical time, the weight of the gaussian component increases.

• t = tc

At the critical time, thesmax-distribution is expected to be much more complicated. However,
it is still well approximated with the sum of a Gumbel and of a gaussian distribution (see
Figure 3). Remarkably, one finds that the weights associatedto each distribution are fairly
equal (i.e. the respective areas of the curves are similar). We can then suggest, in the present
case, that the critical point is characterized by the equality of the respective weights of the
Gumbel and gaussian contributions. This point will be discussed below.

• tc < t < t⋆

When the system state is in the post-gelation phase, one expects the gaussian contribution
to be the most important part of the order-parameter distribution. This is exemplified on
the Figure 4, on which the gaussian part (gray area) is clearly dominant. As expected, the
Gumbel part disappears progressively when the time moves away from the gel time (Figure
4 (e)).
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Figure 3: Same analysis as for the Figure 2, for 105 independent systems of sizeN = 512 at the gel-time of
the infinite system, that is:t = tc. In this special case, the area of the Gumbel distribution (dashed line) is
found to be equal to the area of the gaussian distribution (gray area). Then, both distributions contribute to
thesmax-distribution with equal weight.

4.3 Conclusions from the numerical study

The numerical results suggest a general scenario about the correlations in the system with the
extremal order parameter. Namely, if we expand the order-parameter distribution,φ1(smax) as:

φ1(smax) ≃ wGu fGu(smax)+wGa fGa(smax) (4.2)

where fGu and fGa are respectively a Gumbel and a gaussian distribution, then, the quantity:

η =
wGa−wGu

wGa+wGu
(4.3)

is a measure of the distance to the critical point, or, equivalently, η is directly related to the value
of the correlation size.

According to the general argument given above and the results on the Smoluchowski aggre-
gation model – as exemplified on the Figure 5 –, one can proposethe following features for the
various values ofη for afinite system:

• η = 1 when the finite-system state is in the ordered phase

• η = −1 when the finite-system state is in the disordered phase

• η = 0 coincides with the critical point for the infinite system

• −1< η < 1 characterizes the pseudo-critical domain, where the correlations play a paramount
role in the system state

Note that the particular valueη = 0 seems to appear for the critical point of the infinite system
(in the Figure 5, it occurs fort/tc = 1), and not for the point where the fluctuations of the order
parameter are the largest (in the Figure 5, it should be att/tc = 1.3, as shown on Figure 1).
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Figure 4: Same analysis as for the Figure 2, for 105 independent systems of sizeN = 512 in the post-gelation
domaint > tc. Figure 4 (d) corresponds to the timet = 1.4tc. Figure 4 (e) corresponds to the timet = 1.6tc.
As the time goes, the weight of the Gumbel component (dashed curve) decreases.

4.4 robustness of the analysis

Various tests were performed to check how robust is the resent analysis. For example, we
added a fragmentation term to the Smoluchowski aggregationequations (4.1). Generally, it results
in a saturation of the standard deviationσ of the largest fragment when steady-state is reached,
that is for timet → ∞. However, the critical behavior at the finite time is kept when the initial
conditions are regular (e.g. monodisperse system of fragments of size 1 ; this corresponds to the
initial condition as the extreme disordered state). Then, we observe that the analysis in the sum of
a Gumbel and of a gaussian distributions, stays the same, andis still able to detect the critical point
of the infinite matter [23]. In the case of aggregation/fragmentation process, detailed balanced can
be essential [24], but for the present analysis, no effect was noticeable when choosing a system
in which detailed balance was not realized. Also the Smoluchoswki kernelK0i j was changed in
K0i2/3 j2/3, that corresponds to different coalescence cross-sections, but still exhibits a critical gel
time. In this case too, the decomposition in sum of two standard distributions worked well in the
pseudo-critical domain around the gel time.

5. how to get information about the real fragmentation process

In the analysis above, we were interested in detecting a possible critical point of the infinite
system from the overall shape of the order-parameter distribution. A more subtle point is to know

10



P
o
S
(
W
P
C
F
2
0
1
1
)
0
0
7

about the largest-fragment distribution Robert Botet

Figure 5: Sketch of theη values versus the reduced timet/tc for the Smoluchowski aggregation model
(black circles). Whenη = −1, the order parameter distribution,φ1(smax), is the Gumbel distribution. When
η = 1, φ1 is the gaussian distribution. In this model, the finite-system state goes gently from Gumbel-like to
Gauss-like, passing through the particular valueη = 0 at the critical time,t/tc = 1. The bold line in the shape
of a step function passing discontinuously from the value−1 to the value+1 at t/tc = 1, is the expected
behavior ofη for the infinite system.

something about the mechanisms which leads to the fragments. In principle, one can obtain precise
information investigating the second largest fragment,s2. Indeed, if the systems created instanta-
neously all the fragments (a process called ‘multifragmentation’ [26]), the distribution of thekth

largest fragment,sk, in the disordered phase should be [25]:

φk(sk) =
1

(k−1)!
1

bm
e−kzk−e−zk (5.1)

zk =
sk−am

bm
(5.2)

in which the scaling coefficientsam andbm are the sameas for the largest-fragment case, that is
(2.5).

Another option for the mechanism is that fragmentation occurs step by step: the system splits
into several fragments, then each of the fragments breaks upin several pieces and so on. Afterν
steps of successive fragmentations, the largest fragment in the system will be probably the result
of the fragmentation of the largest piece in the stepν −1. Then the distribution ofsmax will be a
Gumbel distribution, with the coefficientsam andbm corresponding to the parameters of the parent-
piece. Nothing would change between the scenario of the multifragmentation, and the scenario of
the sequential fragmentation [26]. However, the distribution of the second largest fragment is
different, because this fragment is almost surely the largest fragment of its own parent-piece. Then,
one expects the distribution ofs2 to be also a Gumbel distribution with different values of the
parametersam,bm. More precisely, the two options will write respectively:

bmφ1(smax) = e−z1−e−z1 ; bmφ2(s2) = e−2z2−e−z2 (multifragmentation) (5.3)

z1 = (smax−am)/bm ; z2 = (s2−am)/bm (5.4)

bmφ1(smax) = e−z1−e−z1 ; bmφ2(s2) = e−z′2−e−z′2 (sequential-fragmentation) (5.5)

z1 = (smax−am)/bm ; z′2 = (s2−a′m)/b′m (5.6)

11
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There are two differences. One is in the coefficient 2 in the first exponential function of theφ2

function (note that this coefficient is in principle easy to detect as an extra factor 2 in the slope
of lnφ2(s2) versuss2 for the large values ofs2, when plotted in the scaled variablez2). The other
difference is about the values of the couple of parametersa′m,b′m (for s2 variable) compared with
am,bm (for thesmax variable).

Generally, it is difficult to obtain precise probability distribution of the third or smaller frag-
ments, but if information is available, it can be used the same way to check more carefully the
aggregation/fragmentation scenario.

6. Conclusion

Finite systems cannot exhibit critical phenomena, though correlations play a relevant role
within an extended range of the parameter controlling the system state. This range of values is
called the pseudo-critical domain, and can be defined precisely.

In the present work, we studied the case of systems where the only available information is
about fluctuations of the extremal order-parameter. Two critical models in the same universality
class, are discussed in this context: the percolation – which is at-equilibrium model –, and the
Smoluchowski aggregation model – which exhibits a dynamical phase transition –. Both models
give a novel coherent insight about the structure of the order-parameter distribution function in the
pseudo-critical domain. Because the system is finite, the visible system state appears to be some-
times in the disordered state, and sometimes in the ordered state, when the control parameter is
close to the critical point. Consequently, the effective order-parameter distribution is well fitted by
a weighted sum of a Gumbel distribution (characteristic of the disordered state) and of a gaussian
distribution (characteristic of the ordered state). The parameterη – which is essentially the relative
ratio between the Gumbel and the gaussian contributions –, is proposed to measure the distance of
the average system state to the critical state of the infinitesystem. This new parameter can easily
be calculated from the order-parameter distribution of thefinite system, and its proper value gives
a definite information about the strength of the correlations acting in the system. Moreover, one of
the observable parameters (bm) gives an estimation of the actual correlation size in the system.

When one can have access at the same time to the largest and thesecond largest fragment, then,
the probability distribution of the second largest fragment gives quantitative information about the
mechanisms which produced the fragments.

7. Acknowledgments

During my activity on this subject, I have profited from many discussions and collaborations
with M. Płoszajczak and J. Frankland from GANIL (France), and I thank them warmly. We are
together preparing a paper about the analysis presented above, applied to experimental data of
heavy-ions multifragmentation at intermediate energies.

12



P
o
S
(
W
P
C
F
2
0
1
1
)
0
0
7

about the largest-fragment distribution Robert Botet

References

[1] A.D. Bruce,J. Phys. C143667-3688 (1981); M.M. Tsypin and H.W.J. Blöte,Phys. Rev. E6273
(2000).

[2] R. Botet and M. Płoszajczak,Universal Fluctuations – the phenomenology of hadronic matter –,
World Scientific Lecture Notes in Physics, vol. 65, World Scientific, Singapore, 2002.

[3] D. Nicolaides and A. D. Bruce,J. Phys.A 21, 233 (1988).

[4] H. Fischer,History of the Central Limit Theorem: From Classical to Modern Probability Theory,
Springer, New York (2010).

[5] B. Bollobàs and O. Riordan,Percolation, Cambridge University Press, Cambridge (2006).

[6] D. Stauffer and A. Aharony,Introduction to Percolation Theory(2nd ed.), Taylor & Francis, London
(1994).

[7] R. A. Fisher and L. H. C. Tippett,Proc. Cambridge Phil. Soc.24, 180-190 (1928) ; B. V. Gnedenko,
Annals of Mathematics44, 423-453 (1943).

[8] S. Coles,An Introduction to Statistical Modeling of Extreme Variables, Springer-Verlag, London
(2001).

[9] J. Pickands,Ann. Probab.14, 996 (1986).

[10] I. Gomez, inExtreme Value Theory and Applications, eds. J. Galambos, J. Lechner and E. Simiu,
Kluwer Acad. Publ., The Netherlands, 1994.

[11] E. J. Gumbel,Statistics of Extremes, Columbia University Press, New York (1958).

[12] G. A. Martynov,Teoret. Matemat. Fisika156, 454-464 (2008) (English translation:Theoret. Math.
Phys.156, 1356-1364 (2008)).

[13] one can derive a more precise result: if the cut-off of the fragment-size distribution,f (s) behaves as
∼ exp(−sc), then the combination(bmac−1

m )1/c gives an estimation of the correlation sizeξ
independently of the multiplicity.

[14] M. Z. Bazant,Phys. Rev. E62, 1660-1669 (2000).

[15] R. Van der Hofstad and F. Redig,J. Stat. Phys.122, 671-703 (2006).

[16] D. Wilmsa, A. Winklera, P. Virnaua and K. Binder,Computer Physics Communications182,
1892-1895 (2011); the present definition for ‘pseudo-critical domain’ must not to be confused with
the ‘pseudo-critical temperature’ which is the temperature for which the susceptibility reaches
maximum, e.g.: S. Wiseman and E. Domany,Phys. Rev. E52, 3469-3484 (1995).

[17] H. E. Stanley,Introduction to Phase Transitions and Critical Phenomena, Oxford Science
Publications, New York (1987).

[18] R. Botet and M. Płoszajczak,Phys. Rev. Lett.95, 185702-4 (2005).

[19] Ph. Biane, J. Pitman and M. Yor,Bull. Amer. Math. Soc.38, 435-465 (2001).

[20] R. Botet,J. Phys.: Conf. Ser.297, 012005-14 (2011).

[21] R. L. Drake,A general mathematical survey of the coagulation equation, in ‘Topics in Current
Aerosol Research’, G. M. Hidy and J. R. Brock, eds., International Reviews in Aerosol, Physics and
Chemistry, Pergamon, Oxford, 201-376 (1972).

13



P
o
S
(
W
P
C
F
2
0
1
1
)
0
0
7

about the largest-fragment distribution Robert Botet

[22] M. V. Smoluchowski,Physik. Z.17, 557-585 (1916).

[23] R. Botet, “Which hidden correlations in the biggest-fragment probability distribution?”, oral
presentation at ‘The Seventh Workshop on Particle Correlations and Femtoscopy’, September 20 - 24
2011, University of Tokyo, Japan.

[24] A. N. Gorban and G. S. Yablonsky,Chemical Engineering Science66, 5388-5399 (2011).

[25] E. J. Gumbel,Annales de l’I.H.P.5, 115-158 (1935).

[26] B. Borderie and M.-F. Rivet,Progress in Particles and Nuclear Physics61, 551-601 (2008).

14


