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1. Introduction

The main theoretical formalism used to understand the structure of the particles observed in
nature is quantum field theory and in particular Quantum Chromodynamics (QCD). As baryons
and mesons are bound states of quarks and gluons, in order to do this one has to calculate in QCD
using non-perturbative techniques such as lattice methods which is computationally intense. For
instance, to understand proton structure one measures the Green’s function of the underlying quan-
tum operator, and its moments, which is built from up, u, and down, d, quarks. Over recent years
there has been interest in assisting lattice measurements of such Green’s functions by computing
the same object in perturbation theory usually in the MS scheme. See, for instance, [[I, B, B, f, Bl.-
In the high energy limit the lattice results should match on to the perturbative estimates. Indeed
in order to reduce errors on the measurements requires perturbative results to as high a loop order
as is possible. Currently, with the use of MINCER, [, this is usually three loops. Here we report
on a recent computation, [[], involving the 3-quark operator corresponding to the proton. We will
present the three loop MS anomalous dimension and note the two loop Green’s function with three
external quark legs and the operator inserted at zero momentum. The latter will be in an arbitrary
linear covariant gauge which will contain the Landau gauge expression the lattice requires. To
avoid infrared issues the squared momenta of all three quark legs are equal and non-zero. For this
momentum configuration MINCER is not applicable but we will use the Laporta algorithm which
in the main is based on integration by parts, [B], in order to determine the Green’s function at two
loops.

2. Background

The particular operators we have renormalized in the MS scheme, [[f], are those relating to the
proton in the chiral limit which are

0, = e () ed) . g, = e (1) cpd) (2.1)

where |, J and K are the SU (3) colour indices and C is the charge conjugation matrix satisfying
C(y")'c = y¥ (2.2)
with CC = — 1. These operators mix under renormalization and we have carried out two compu-

tations. In particular we consider the Green’s function <L,Ua(p) wﬁ(q) Yy(—p—0q) ﬁi5(0)> for two
different momentum configurations. One is where g = 0 which allows us to apply the MINCER
algorithm to deduce the anomalous dimension mixing matrix to three loops. The other is the case
where the external momenta satisfy

where U is the mass scale which ensures the coupling constant is dimensionless in d spacetime
dimensions. This choice means that no external quark leg is at zero momentum which would
be difficult for lattice computations. For the MINCER computation the nullification of one external
quark momentum does not introduce infrared infinities since there is always a protecting numerator
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momentum vector from either a quark propagator or a vertex. However, for the full momentum
configuration we will only compute to two loops for an arbitrary linear covariant gauge since that
is the current range of analytic computation at present. The Landau gauge expression emerges
as a corollary. For the SJ(3) colour group the operators are gauge invariant and therefore the
anomalous dimensions will be independent of the gauge parameter. This will provide a non-trivial
internal check on the results. All our computations are carried out using the symbolic manipulation
language Forwm, [f], and its threaded version, [[L0], including the FORM version of MINCER, [[L1]].
The diagrams are generated with QGRAF, [[L2]]. Overall there are 3 one loop, 40 two loop and 784
three loop Feynman diagrams to be computed.

3. General Technicalities

As we are dealing with two operators with the same quantum numbers, (R.1), they will mix
under renormalization. This can be easily seen from the structure of y-matrices at two loops if one
seeds the Green’s function with &;. Then the structure y°y*y?y® @ yPyty?y® will be generated
with a divergence in € where d = 4 — 2¢. In addition we will have to accommodate y° within the
dimensionally regularized calculations. As a result of both of these issues additional operators will
be generated under renormalization in d spacetime dimensions, called evanescent operators, which
are non-existent in strictly four dimensions. Their effect cannot be omitted from the derivation
of the anomalous dimension mixing matrix. The treatment of these three technical problems is
related. In general the mixing is handled by a mixing matrix of renormalization constants, Zij,
producing an anomalous dimension matrix, y;;(a),

d

To treat y° in d-dimensions within our automatic symbolic manipulation programmes we have ex-
tended the Larin scheme, [[[3], to the 3-quark operators. Briefly, y° is replaced in d-dimensions by
a related product of d-dimensional y-matrices. The renormalization is performed in d-dimensions
with the renormalization of the evanescent operators being included in an extension of the mixing
matrix from two dimensional to infinite dimensional. Though it is a finite matrix order by order in
perturbation theory.

To quantify these evanescent operators and to have a full basis for the spinor space in d-
dimensions we use the generalized y-matrices which are defined by, [[L4} 5],

1
rfnl) Hn — my“'l Lyl (3.2)

For practical programming purposes they can be defined recursively by, [[[5, [L§, 7],

n
Hyfny v HyHoV L) eV P H e bk
r(ﬁ) y = r(§+1) + r;( )" "n F(;_l) gt (3.3)

Consequently we have to extend the basis of operators, (2.1, to the d-dimensional basis operators,
— AIK (g T K
O = € (rml) W) (W) 8%) - 4

clJIK

— | NT K N
ﬁ(4) = o1 (I’é‘i)ﬂzﬂsmw ) ((‘-I/ ) Cr(4)H1H2H3H4w ) , h=4 (3.9
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where the operator &, is replaced in d-dimensions with 6"(4>. Though it transpires that under the
renormalization only the operators of the form ﬁ(4n) for positive integer n are generated. As a
coding test on the generalized y-matrices and the associated FORM module, we have renormalized
the diquark operators, [f],

ﬁ&ﬁin . = £|1|2|3‘..|N:(4"1)Tcréﬁ)'"“"w|2 (3.9)
for the colour group SU (N;).

To treat y° in d-dimensions we first determine what is termed the naive anomalous dimension
mixing matrix, y;(a), where a = g?/(1677) and g is the coupling constant. This is derived from
the renormalization constants required to make the Green’s function finite in d-dimensions in the
MS scheme. Ignoring the evanescent operator generation problem for the moment ¥;(a) would
ordinarily be the correct anomalous dimensions. However, as we have computed in d-dimensions
where there is no concept of chiral symmetry the naive expressions cannot be consistent with an
anticommuting y® in strictly four dimensions. To have the correct chiral symmetry, Larin intro-
duced an additional finite renormalization, [[[3]. Here the corresponding renormalization will be a
matrix, zg,r; It is chosen in such a way that the anticommutativity of y° is restored in strictly four
dimensions. In the context of our naive mixing matrix there is therefore a second matrix corre-
sponding to this finite renormalization, Vsij (a), in order to produce the full anomalous dimensions,
¥j(a), via

V(@) = ¥(a) + vg (@) - (36)
The finite renormalization is in essence defined to be the discrepancy in the values of the Green’s
function with and without the y® after renormalization and in strictly four dimensions. In our case
this is formally represented by

(0) = V00, . (3.7)

We have not included the fields with the momentum configuration here as the value of ZQ,T is
the same for both calculations which is a strong check on our extension of [L3]. A final remark
concerns the evanescent operators. Their contribution to the renormalization is to be included in the
construction of ] (a). Then the restoration of chiral symmetry is treated in strictly four dimensions.

4. Results

We summarize our results in this section. First, the presence of I"(Ji>“2”3“4 in the operator
ﬁ(4) means that the operator 0(8) will be generated at two loops. This additional operator will, in
principle, need to be included in the derivation of the three loop anomalous dimensions. However,
using the method of [[L8] its effect will not appear until four loops as the overlap of &, with ﬁ(g)
does not begin until two loops. The associated anomalous dimension carries two powers of the
coupling constant. Next, we have checked that the finite renormalization constant required to
restore chiral symmetry in strictly four dimensions is the same for both calculational setups. As
in previous finite renormalizations in the MS scheme, [[[3], the renormalization constant is gauge
independent. Although it is a matrix for the proton operator there is no universality in the sense
that the constituent elements of the matrix are equivalent to other finite renormalizations associated
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with operators containing y°. In other words one has to establish the additional contributions
for each individual operator. One expression cannot be translated to another computation with a
different operator. Whilst we are computing the three loop anomalous dimensions we only need the
finite renormalization to two loops. This is because its conversion to the associated y° anomalous
dimension, y; ;; (a) involves the B-function whose leading term includes the coupling constant. For
(.2 the first row of Ysij (a) is zero to three loops which is consistent with the y-matrix counting.
Thus we find

¥11(8) = V5 12(8) = O(a*)
a’ 4 a’ 4

Vo1 (8) = 125 [2Nf _33} = +0(@") , Vozl(@) = — 500 [2Nf _33} - +0@a") 41)
as the contribution to the naive anomalous dimension mixing matrix from the finite renormalization
where N; is the number of massless quarks.

Thus we find the three loop MS mixing matrix of anomalous dimensions is
a2
V(@) = yp(a) = — 2a— [ZNf +51] 9
3

+ [260Nf2+[4:«320((3)—4656]Nf +12967 (3) + 23481 1‘2—2 + O(a%)
10 , a® 4
Vial@) = yu(@) = Sa+ 2164 (3) — 153 - 14N, ~ + 0@ (4.2)

where {(z) is the Riemann zeta function. All four entries in the matrix would be different in the
absence of the finite renormalization. At two loops the gauge parameter cancels and our expressions
are in agreement with the one and two loop results of [[Ld, B0}, B1], P2]. Although we have performed
the three loop calculation in the Feynman gauge, the double and triple poles in the three loop
renormalization constants are consistent with the renormalization group equation. However, it is
the anomalous dimensions of the eigenoperators of (.2) which are required and we have

(@) = y11(a) + yi(a)

2 3
— _2a- [2Nf +21} % + [260Nf2+ (43207 (3) — 4T40]N, + 2592 (3) +22563] 1‘%2
v-(a) = v11(8) — ¥o(a)
a2 a3
— —2a- [2Nf +81} 5+ [260N$+ 143207 (3) — 4572]N; +24399} = (4.3)

where the latter corresponds to that of the proton itself.
Finally, in order to do a full lattice matching at two loops we record the Green’s function at
the symmetric subtraction point. The one loop expression is

<wa(p)wg(q)wy(—p—q)ﬁla(0)>\symm = [H% [2mPa + 15a + 21 + 15
-3y (3) -3¢/ (3)a] a]la(s@lﬁy
+ [By'(Ha+3y'(})a—2mta 217

pq pu
X {4Ia5®aﬁy+2006®a

a
PU 2
+40 5 ® unﬁy} 81112 +0(a%) (4.4)

puBy
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for arbitrary linear covariant gauge where (/(2) is the derivative of the logarithm of the Euler I'-
function. The two loop expression is too cumbersome to record here but can be found in [f].
Though we note that the computations for this momentum configuration used the REDUZE version,
[B3], of the Laporta algorithm, [B]], and is based in GINAC, [4]. At two loops the masters involve
conventional and harmonic polylogarithms, [5, P6|, B7] B§], and are summarized in [H]. The ex-
pression for the operator &, can be deduced from (#.4) by multiplying by y° @ y® and respecting

®2.
5. Discussion

We have presented an overview of the current state of play with regard to computing the renor-
malization of 3-quark operators to three loops in the MS scheme. In addition we have determined
the appropriate Green’s functions to two loops in order to aid lattice matching of the same quantity.
In terms of spin-(j, ﬁrepresentations of the Lorentz group our results correspond to an operator in
the D( 1 representation of both chiralities. There are several future directions with this analysis.
One isztb extend to other baryons and representations such as D(1 ;. andD S0 Equally in order to

refine proton structure measurements further, knowledge of the renormalization of higher moments

of the operators for moments n < 2, are required. For example, this would be relevant to the study
of distribution amplitudes.
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