
P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5

S. Agrawal
LNM IIT, Rupa Ki Nagal, Post-Sumel, Via Jamdoli, Jaipur–302031, India
E-mail: shivam@mpp.mpg.de

T. Hahn∗

MPI für Physik, Föhringer Ring 6, D–80805 Munich, Germany
E-mail: hahn@mpp.mpg.de

E. Mirabella
MPI für Physik, Föhringer Ring 6, D–80805 Munich, Germany
E-mail: mirabell@mpp.mpg.de

We present additions and improvements in Version 7.5 of FormCalc, most notably OPP methods,

Output in C, MSSM initialization via FeynHiggs, and Analytic tensor reduction, as well as a

parallelized Cuba library for numerical integration.

Report MPP-2012-136

Loops and Legs in Quantum Field Theory – 11th DESY Workshop onElementary Particle Physics,
April 15–20, 2012
Wernigerode, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5 T. Hahn

1. Introduction

The Mathematica package FormCalc [1] simplifies Feynman diagrams up to one-loop order
generated by FeynArts [2]. It provides both the analytical results and can generate code for the
numerical evaluation of the squared matrix element.

Mathematica’s powerful language enables users to easily inspect and modify results and should
be considered a feature, even though the use of commercial software is claimed as deleterious by
some.

This note presents improvements and additions in FormCalc 7.5 and the numerical integration
package Cuba 3 [3], which is also included in FormCalc:

• Unitarity methods (OPP),

• Parallelization of helicity loop,

• Output in C and improved code generation,

• Command-line parameters for model initialization,

• MSSM initialization via FeynHiggs,

• Analytic tensor reduction,

• Auxiliary functions for operator matching,

• Built-in parallelization in Cuba.

2. Unitarity methods (OPP)

FormCalc 7 can generate code which uses the OPP (Ossola, Papadopoulos, Pittau [4]) unitarity
methods as implemented in the two libraries CutTools [5] andSamurai [6]. Rather than introduc-
ing Passarino–Veltman (PV [7]) tensor coefficient functions, the entire numerator is placed in a
subroutine, as in:

ε µ
1 εν

2 Bµν(p,m
2
1,m

2
2) = Bcut(2,N, p,m2

1,m
2
2) , where N(qµ) = (ε1 ·q) (ε2 ·q) .

The numerator subroutineN will be sampled by the OPP function (Bcut in this example). The first
argument ofBcut, 2, gives the maximum power of the integration momentumq in N.

Subexpressions of the numerator function (coefficients, summands, etc.) which do not depend
on q are pulled out and computed once, ahead of invoking the OPP function, using FormCalc’s
abbreviationing machinery [8]. In particular in BSM theories, these coefficients can be lengthy
such that pulling them out significantly increases performance.

The CutTools and Samurai libraries have minor differences in calling conventions but are
otherwise similar enough to let the preprocessor handle theswitching. That is, one does not need
to re-generate the Fortran code in order to link with the other library. Specifically, the following
steps must be taken in order to use the OPP method in FormCalc:

• The amplitudes must be prepared withCalcFeynAmp[..., OPP → n] (n< 100).

2

P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5 T. Hahn

• In the generated code, the OPP library (CutTools or Samurai)must be chosen and the decla-
rations inopp.h be included. This is most conveniently done inuser.h, in the following
structure:

#ifndef USER_H

#define USER_H

* declarations for the whole file (e.g. preprocessor defs)

#define SAMURAI (or CUTTOOLS)
#else

* declarations for every subroutine

#include "opp.h" (necessary for OPP)
#include "model_sm.h"

#endif

We have presently compared a handful of 2→ 2 and 2→ 3 scattering reactions, both QCD and
electroweak, and found agreement to about 10 digits betweenPV and OPP, with CutTools and
Samurai delivering results of similar quality. This shows that the method is working.

The performance is lagging quite a bit, however, at least when applying the OPP method
naively and for lower-leg multiplicities. The principal difference is that the numerator function
imposes a helicity dependence on the OPP function such that,unlike the PV tensor coefficients, it
cannot be hoisted out of the helicity loop.

The following improvements have been made to optimize performance:

• Our implementation admits mixing PV decomposition with OPPin the sense that one chooses
an integern starting from which ann-point function is treated with OPP methods. For exam-
ple,OPP → 4 means thatA, B, C functions are treated with PV andD and up with OPP. A
negativen indicates that the rational terms for the OPP integrals shall be added analytically
whereas else their computation is left to the OPP package.

• The number of OPP calls turns out to be more detrimental to performance than the complex-
ity of the numerators. The simplification strategy for OPP integrals is thus to join, rather than
split (as for PV), denominators. A loop integral whose denominators form a complete subset
of another are joined with the latter, as in

N4

D0D1D2D3
+

N3

D0D1D2
→

N4+D3N3

D0D1D2D3

Furthermore, simplifications that break up loop integrals are suppressed, such as the cancel-
lation of q2-terms, e.g.

q2

(q2−m2)D1D2
6→

1
D1D2

+
m2

(q2−m2)D1D2
.

• Profiling the code pointed us to inefficiencies in the evaluation of fermion chains. In older
FormCalc versions, the computation proceeded through nested invocations of elementary op-
erations (2-component matrix–vector and vector–vector products [9]). Inlining these func-
tions in a portable way in Fortran was syntactically not straightforward, so we switched to

3

P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5 T. Hahn

single function calls for an entire chain, as in:

〈u|σµσν σρ |v〉kµ
1 kν

2kρ
3 =: 〈u|k1k2k3 |v〉

old= SxS(u, VxS(k1, BxS(k2, VxS(k3, v))))

new= ChainV3(u,k1,k2,k3,v)

As the profiler no longer ‘sees’ these now-inlined functions, we cannot quote a concrete
figure for the performance gain; a naive before–after comparison of wall-clock time indicates
an improvement on the order of 5–10%, however.

• To avoid the evaluation of integrals whose prefactor is known to be exactly zero from helicity
considerations we added an “helicity delta” argument to each OPP integral, for example:

Dcut(1-Hel1, rank, num, ...),

which will not be evaluated ifHel1 is 1.

3. Parallelization of Helicity Loop

Perhaps the most obvious way to address the OPP slowdown is toparallelize the loop over the
helicities. Code generated by FormCalc is in fact well suited for this as FormCalc does not insert
explicit helicity states in the algebra already [9]. That is, the amplitude is a numerical function of
the helicitiesλi and not a bunch of (different) functions for each helicity combination,

M = M (λ1,λ2, . . .) 6= {M−−···, M+−···, M−+···, M++···}

In computer science this is known as a Single Instruction Multiple Data (SIMD) design since a
single code (M) is independently run for multiple data (λi), and is conceptually easy to parallelize.

Our process model has one master andN workers on anN-core system. The master is in charge
of the non-helicity-dependent parts of the computation andcoordinates the workers, i.e. starts/stops
them and distributes/collects the data. Currently we use the samefork/wait technology as in
Cuba, with socketpair I/O for the data transmission (see Sect. 9).

The implementation is brand new and speed-up measurements are not yet available. Unless
the helicity loop accounts for a significant part of the computation time, however, the achievable
overall speed-ups may well be limited as the master performsthe non-helicity-dependent work
single-threaded. Thus, we expect OPP to gain more from parallelization than the PV method.

Unless one is evaluating a single phase-space point only, the helicity parallelization clearly
competes for compute cores with Cuba, and it is at present an open question which is the optimal
strategy for assigning the cores. Then again, the currentfork/wait code can be regarded as a
proof-of-concept implementation and may be substituted e.g. by a GPU version in the future, for
which most of the organizational groundwork is then alreadylaid. For instance, a sizable part of
the present effort went into grouping the variables into helicity-dependent and -independent ones,
to minimize communication overhead between the master and the workers. Likewise, new versions
of the LoopTools functions had to be introduced to obtain control over the cached loop integrals.

The parallelization is enabled in the code by

4

P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5 T. Hahn

#define PARALLEL

which is usually placed inuser.h. The actual number of cores used can be specified in the
environment variableFCCORES. If FCCORES is not set, all free cores (total cores minus current
system load) are used. Note that, at least for now, FormCalc is not aware of the number of cores
taken by Cuba, e.g. theCUBACORES variable.

4. C output and improved code generation

Code generation in C99 is available in FormCalc 7.5 next to the traditional Fortran output.
This feature is enabled with

SetLanguage["C"]

The generated code is binary-compatible with Fortran, i.e.its object files can be linked directly to a
Fortran program. The C code accordingly observes Fortran calling conventions (pointers only) and
uses underscore-suffixed lowercase function and struct names. One temporary setback is that there
is no automatic translation yet of the declarations part of the FormCalc driver modules, e.g. of the
model parameters, which are obviously necessary for compiling the C code.

The advantages of C code are threefold:

• It makes integration of generated code into existing C/C++ packages easier (no linking has-
sles).

• It simplifies GPU programming; for Fortran, only a single, commercial, compiler (PGI)
currently targets the GPU.

• One can take advantage of C’slong double data type which, at least on Intel x86 hard-
ware, gives an additional 2–3 digits of precision at essentially no extra cost. Extended real
data types in Fortran, if available, are often IEEE-754-compliantREAL*16 emulated in soft-
ware. Only gfortran 4.6+ offers theREAL*10 Fortran equivalent oflong double.

Improvements have been made to the Fortran code generation as well:

• Loops and tests are handled through preprocessor macros, e.g.

LOOP(var, 1,10,1)

...

ENDLOOP(var)

This aids automated substitution with e.g.sed. It also enhances readability (ENDLOOPwith
a variable name rather than an incognitoenddo) and makes the ‘look’ of the C and Fortran
code fairly similar.

• Likewise, the main subroutineSquaredME.F is now sectioned by comments. For example,
the variable declarations are enclosed in

5

P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5 T. Hahn

* BEGIN VARDECL

...

* END VARDECL

• The generated code and the driver files are consistently formulated in terms of the newly
introducedRealType andComplexType data types, by default equivalent todouble
precision and double complex, respectively. Note that capitalization matters as
these words are substituted by the preprocessor. This introduces a level of abstraction which
makes it easier to e.g. work with a different precision.

5. Command-line parameters for model initialization

FormCalc includes a suite of so-called driver programs to manage the automatically generated
code for computing the squared matrix element. They parse the command line, initialize model
constants, set up phase space, etc.

In particular the driver modules for the initialization of the model parameters and luminosity
calculation (which includes e.g. the setup of PDFs used in hadronic reactions) had no access to
the command-line arguments so far and could use only variables supplied by the user in the main
control programrun.F. In other words, the model inputs and PDF selections were ‘compiled in’
and the executable had to be re-built every time those valueschanged.

The present command-line parser accepts so-called colon arguments (arguments starting with
a ‘:’) before the usual ones on the command line, as in:

run :arg1 :arg2 ... uuuuu 0,1000

The colon arguments are read into an array (sans colon) and handed to the model-initialization and
luminosity-calculation subroutines:

subroutine ModelDefaults(argc, argv)

subroutine LumiDefaults(argc, argv)

integer argc

character*128 argv(*)

Note that, unlike in C (char **argv), fixed-length strings are passed inargv since there are
no pointers in Fortran 77. It is up to theModelDefaults andLumiDefaults subroutines to
handle the arguments. In Fortran it is furthermore no fatal error to have no formal arguments in the
ModelDefaults andLumiDefaults subroutines (as in previous FormCalc versions), so old
code will compile and run without change.

6. MSSM initialization via FeynHiggs

The colon arguments of the previous section are immediatelyput to use for the initialization
of the MSSM through FeynHiggs [10]. The default MSSM initialization is a stand-alone routine

6

P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5 T. Hahn

(i.e. requires no external library to be linked), but is not quite as thorough as FeynHiggs when it
comes to the corrections included e.g. in the computation ofthe Higgs masses.

From FeynHiggs version 2.8.1 on not only the computational engine but the entire Frontend
functionality is available through library routines so that the colon arguments can simply be passed
to a FeynHiggs subroutine to make FeynHiggs initialize itself as if invoked from its own command-
line Frontend. The FormCalc-generated code inherits thus the ability to read parameter files in
either native FeynHiggs or SLHA format, and of course obtains all MSSM parameters and Higgs
observables from FeynHiggs. There is no duplication of initialization code this way, and moreover
the parameters are consistent between the Higgs-mass and the cross- section calculations.

To use the FeynHiggs initialization, the model-initialization modulemodel_fh.F is chosen
instead ofmodel_mssm.F. The compiled code is invoked as

run :parafile :flags uuuuu 0,1000

The colon arguments are just the ones of the FeynHiggs Frontend: parafile is the name of the
parameter file and the optionalflagsallows to override the default flags of FeynHiggs.

7. Analytic tensor reduction

Despite the hype that surrounds unitarity methods today, the Passarino–Veltman decomposi-
tion of tensor one-loop integrals [7] remains a valuable technique, also because it admits a fully
analytic reduction. The complete tensor reduction consists of two steps:

• The Lorentz-covariant decomposition of the tensors of the loop momentum appearing in
the numerator into linear combinations of tensors constructed from gµν and the external
momenta with coefficient functions, e.g.

∫
d4q

qµqν

D0D1
∼ Bµν = gµνB00+ pµ pνB11.

This part has always been performed in FormCalc, as the actual tensors are rather unwieldy
objects for further evaluation.

• Solving the linear system that determines the coefficient functions, i.e. expressing the coeffi-
cient functions through scalar integrals.

FormCalc has for long included the add-onFormCalc‘btensor‘ package which analyt-
ically reduces one- and two-point functions when loaded, but higher-point functions could be re-
duced only indirectly through FeynCalc [11], i.e. the user had to convert/save the amplitudes with
FeynCalcPut, run FeynCalc in a different Mathematica session, and load the reduced expres-
sions into FormCalc again withFeynCalcGet. This procedure was not only suboptimal in terms
of user-friendliness but also did not take advantage of the field levels of FeynArts, i.e. FeynCalc
always operated on the fully inserted amplitudes rather than the (typically much fewer) Generic
amplitudes.

The analytic tensor reduction is meanwhile properly available in FormCalc and can be turned
on through the option

7

P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5 T. Hahn

CalcFeynAmp[..., PaVeReduce → True]

Our code implements the reduction formulas of Denner and Dittmaier [12]. While these are fully
worked out, it nevertheless took considerable effort to program them in FORM due to at first sight
trivial issues, e.g. that there is no straightforward way toobtain theN-th argument of a function.
Adding the reduction code to the Mathematica part of FormCalc instead was not an option, how-
ever, as we wanted to operate on the Generic amplitudes, before the substitution of the insertions,
and this happens in FORM.

Inverse Gram determinants, which appear as a by-product of inverting the coefficient-function
system, may lead to instabilities in the numerical evaluation later on and therefore FormCalc tries
to cancel them as much as possible. The ones that cannot be cancelled immediately are returned as
IGram[x] (= 1/x) and so can easily be found and processed further in Mathematica.

8. Auxiliary functions for operator matching

As numerical calculations are done mostly using Weyl-spinor chains, there has been a paradigm
shift from FormCalc 6 on for Dirac chains, to make them bettersuited for analytical purposes, e.g.
the extraction of Wilson coefficients.

SeveralCalcFeynAmp options allow to arrange Dirac chains in almost any prescribed order
so that the coefficient multiplying a product of Dirac chainscan be read off easily.

• The Antisymmetrize option allows the choice of completely antisymmetrized Dirac
chains, i.e.DiracChain[-1,µ, ν] = 1

2[γµ ,γν].

• TheFermionOrder option implements Fierz methods for Dirac chains, allowingthe user
to force fermion chains into any desired order, e.g.FermionOrder → {2,1,4,3}

produces fermion chains of the type〈2| · · · |1〉 〈4| · · · |3〉. Alternately,FermionOrder →

Colour brings the spinors into the same order as the external colourindices. If only simpli-
fication is sought,FermionOrder → Automatic chooses a lexicographical ordering.

• TheEvanescent option introduces for every application of the Fierz identity a term of the
form Evanescent[original operator, Fierzed operator] with the help of which one can
detect problems due to the application of the Fierz identities.

9. Built-in parallelization in Cuba

Cuba is a library for multidimensional numerical integration which is included in FormCalc
but of course can be used independently, too. Only the Mathematica interface was able to compute
in parallel so far, by redefining the functionMapSample with e.g.ParallelMap. In the latest
release, Cuba 3, we added parallelization also to the C/C++ and Fortran interfaces.

We attempt no parallelization across the network, say via MPI. That is, we restrict ourselves
to parallelization on one computer, using operating-system functions only, hence no extra software
needs to be installed. A common setup these days, even on laptops, is a single CPU with a num-
ber of cores, typically 4 or 8. Utilizing many more compute nodes, as one could potentially do

8

P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5 T. Hahn

with MPI, is more of a theoretical option anyway since the speed-ups cannot be expected to grow
linearly.

We usefork/wait rather than thepthread* functions. The latter are slightly more effi-
cient at communicating data between parent and child because they share the same memory space,
but for the same reason they also require a reentrant integrand function, and apart from the extra
work this takes, a programmer may not even have control over reentrancy in his language, e.g.
Fortran’s I/O is typically non-reentrant.fork on the other hand creates a completely independent
copy of the running process and thus works for any integrand function with almost no restrictions
(buffered I/O to a common file, for example, usually leads to unexpected results when executed
concurrently).

Because afork is moderately expensive even on Linux with its efficient copy-on-write im-
plementation, we use the ‘spinning threads’ method, i.e. a Cuba routine forks its workers once upon
entry and afterwards starts and stops them by sending data orcollecting results.

Cuhre
Divonne

Suave
Vegas

virtual coresreal cores

f“easy” = sinx cos y exp z, t = 1000µsec

87654321

7

6

5

4

3

2

1

Cuhre
Divonne

Suave
Vegas

f“hard” = Θ(1− x2 − y2 − z2), t = 1000µsec

87654321

Cuhre
Divonne

Suave
Vegas

f“hard” = Θ(1− x2 − y2 − z2), t = 10µsec

Cuhre
Divonne

Suave
Vegas

f“easy” = sinx cos y exp z, t = 10µsec

7

6

5

4

3

2

1

Figure 1: Cuba speed-ups for a three-dimensional integral on an i7-2600 Linux system (3.1.10) with 4 real/8
virtual (hyperthreaded) cores. The vertical line at 4 coresmarks the cross-over. The requested accuracy is
10−4 in all cases. Left column: ‘easy’ integrand. Right column: ‘hard’ integrand. Top row: ‘fast’
integrand (10µsec).Bottom row: ‘slow’ integrand (1000µsec per evaluation).Solid line: shared memory,
Dashed line: socketpair communication (two curves each to show fluctuations in timing measurements).
Note that also in the one-core case a parallel version is used(one master, one worker), which explains why
the timings normalized to the serial version are below 1, in the top row visibly so. What appears to be a
drastic underperformance of Cuhre in the upper left panel can in fact be attributed to Cuhre’s outstanding
efficiency: it delivers a result correct to almost all digitswith around 300 samples. In such a case, Cuba may
for efficiency choose not to fill all available cores and relative to the full number of cores this shows up as a
degradation.

The communication of samples to and from the workers happensthrough IPC shared mem-

9

P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5 T. Hahn

ory (shmget and friends), or if that is not available, through asocketpair. Remarkably, the
former’s anticipated performance advantage turned out to be hardly perceptible. Possibly there are
cache coherence issues introduced by several workers writing simultaneously to the same shared-
memory area.

Changing the number of cores to use does not require a re-compile, which is particularly useful
as the program image should be able to run on several computers (with possibly different numbers
of cores) simultaneously. Cuba determines the number of cores from the environment variable
CUBACORES, or if this is unset, takes the idle cores on the present system (total cores minus load
average). That is, unless the user explicitly setsCUBACORES, a program calling a Cuba routine will
automatically parallelize on the available cores. A masterprocess orchestrates the parallelization
but does not count towards the number of cores, e.g.CUBACORES = 4 means four workers and
one master. Very importantly, the samples are generated by the master process only and distributed
to the workers, such that random numbers are never used more than once.

Parallelization entails a certain overhead as usual, so theefficiency will depend on the ‘cost’ of
an integrand evaluation, i.e. the more ‘expensive’ (time-consuming) it is to sample the integrand,
the better the speed-up will be. To give an idea of the values that can be attained, Fig. 1 shows
the speed-ups for an ‘easy’ and a ‘hard’ one of the 11 integrands of the demo program included
in the Cuba package for two different integrand delays. To tune the ‘cost’ of the integrands, we
introduced a calibrated delay loop into the integrand functions (which are simple one-liners and for
our purposes ‘infinitely’ fast). The calibration and the timing measurements are rather delicate and
shall not be discussed here.

The first, expected, observation is that parallelization isworthwhile only for not-too-fast inte-
grands. This is not a major showstopper, however, as many integrands in particle physics (one-loop
cross-sections, for example) safely fall into the 1000-µsec-and-beyond category.

The second observation is that parallelization works best for ‘simple-minded’ integrators, e.g.
Vegas. The ‘intelligent’ algorithms are generally much harder to parallelize because they don’t
just do mechanical sampling but take into account intermediate results, make extra checks on the
integrand (e.g. try to find extrema), etc. This is particularly true for Divonne, which was originally
a recursive algorithm and thus hard to distribute. It took significant effort to un-recurse the algo-
rithm and lift the speed-up curve even this far above 1, but still Divonne is lagging somewhat in
parallelization efficiency. Then again, the ‘intelligent’algorithms are usually faster to start with
(i.e. converge with fewer points sampled), which compensates for the lack of parallelizability.

10. Summary

FormCalc 7.5 (http://feynarts.de/formcalc) has many new and improved fea-
tures, most notably OPP methods, C-code generation, the link with FeynHiggs, and analytic tensor
reduction. Cuba 3 (http://feynarts.de/cuba), included also in FormCalc, parallelizes
integrations automatically and achieves decent speed-upsfor typical cross-section integrands.

References

[1] Hahn T, Pérez-Victoria M, 1999,Comput. Phys. Commun.118 153 [hep-ph/9807565].

10

P
o
S
(
L
L
2
0
1
2
)
0
4
6

FormCalc 7.5 T. Hahn

[2] Hahn T, 2001,Comput. Phys. Commun.140 418 [hep-ph/0012260].

[3] Hahn T, 2005,Comput. Phys. Commun.168 78 [hep-ph/0404043].

[4] Ossola G, Papadopoulos C, Pittau R, 2007,Nucl. Phys. B763 147 [hep-ph/0609007].

[5] Ossola G, Papadopoulos C, Pittau R, 2008,JHEP0803 042 [arXiv:0711.3596].

[6] Mastrolia P, Ossola G, Reiter T, Tramontano F, 2010,JHEP1008 080 [arXiv:1006.0710].

[7] Passarino G, Veltman M, 1979,Nucl. Phys. B160 151.

[8] Hahn T, 2010,PoS ACAT 2010078 [arXiv:1006.2231]

[9] Hahn T, 2003,Nucl. Phys. Proc. Suppl.116 363 [hep-ph/0210220]

[10] Frank M, Hahn T, Heinemeyer S, Hollik W, Rzehak H, Weiglein G, 2007,JHEP0702 047
[hep-ph/0611326].

[11] Mertig R, Böhm M, Denner A, 1991,Comput. Phys. Commun.64 345.

[12] Denner A, Dittmaier S, 2006,Nucl. Phys. B734 62 [hep-ph/0509141].

11

