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We present an all-order generalized factorization formulafor QCD scattering amplitudes in kine-

matical configurations where two or more momenta of the external partons become collinear. The

singular behaviour of the scattering amplitudes in the collinear limit is encoded by collinear split-

ting matrices. In the space-like region and beyond the tree level, the collinear splitting matrices

depend also on the momenta and quantum numbers of the non-collinear partons, thus breaking

strict collinear factorization. Although the factorization breaking contribution partly cancels for

squared amplitudes, due to its one-loop absorptive origin,remaining effects at high perturbative

orders have implications on the non-abelian structure of logarithmically-enhanced terms in per-

turbative calculations and on various factorization issues of mass singularities.
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1. Introduction

A central topic in QCD and, more generally, in gauge field theories is the structure of infrared
(virtual, soft and collinear) singularities of the perturbative scattering amplitudes. The divergent or
singular behaviour of scattering amplitudes is described by correspondingfactorization formulae
and it is captured by factors that have a high degree of universality or, equivalently, a minimal
process dependence (i.e. a minimal dependence on the specific scattering amplitude).

In the following, we consider the factorization formulae describing the singular behaviour
of QCD amplitudes in kinematical configurations where two ormore external-parton momenta
become collinear. In the case of two collinear partons at thetree level, the collinear-factorization
formula for QCDsquared amplitudeswas first derived in Ref. [1]. The corresponding factorization
for QCD amplitudeswas introduced in Refs. [2, 3]. At the tree level, the multiple collinear limit
of three, four or more partons has been studied [4, 5, 6, 7, 8] for both amplitudes and squared
amplitudes. In the case ofone-loopQCD amplitudes, collinear factorization was introduced in
Refs. [9, 10, 11, 12], by explicitly treating the collinear limit of two partons. Explicit, though
partial, results for the triple collinear limit of one-loopamplitudes were presented in Ref. [13]. The
two-parton collinear limit oftwo-loopamplitudes was explicitly computed in Refs. [14, 15]. The
structure of collinear factorization of higher-loop amplitudes is discussed in Refs. [16, 17, 18].

The singular collinear factors are customarily expected todependonly on the momenta and
quantum numbers (flavour, colour, spin) of the collinear partons, with no dependence on the ex-
ternalnon-collinearpartons. This feature of collinear factorization is denoted as strict collinear
factorization, and it is generally assumed to be valid in thecalculation of cross-sections in hadron–
hadron collisions from the convolution of universal (i.e.,process independent) parton distribution
functions with the hard-scattering cross-section. Strictcollinear factorization, however, is vio-
lated beyond the tree-level for amplitudes inspace-likecollinear configurations [17]. The violation
is originated [17, 18] by long-wavelength absorptive contributions (such as those produced by
Coulomb–Glauber gluons [19, 20, 21, 22, 23, 24, 25]) that causally disconnect initial-state and
final-state interactions, thus limiting the factorizationfeatures due to colour coherence. Owing
to the absorptive (‘imaginary’) origin of the violation of strict factorization, the effect is partly
canceled at the level ofsquared amplitudes. Indeed, such a cancellation is complete up to the
next-to-leading order (NLO). Nonetheless, strict factorization is violated at higher orders. This
challenges the validity of the factorization theorem of mass (collinear) singularities [26, 27] and
related issues in the context of the factorization of transverse-momentum dependent distributions
[28, 29, 30], and it can produce logarithmically-enhanced radiative corrections [22, 17] to hard-
scattering processes in hadron–hadron collisions.

2. Generalized collinear factorization at all orders

A set{p1, . . . , pm} of m (m≥ 2) parton momenta approaches the multiparton collinear limit
when they become parallel. In this limit all the parton subenergies

siℓ = (pi + pℓ)
2 , with i, ℓ ∈C = {1, . . . ,m} , (2.1)
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are of thesameorder and vanishsimultaneously[4, 5]. The collinear direction is defined through
the light-like vector

P̃µ = pµ
1,m−

p2
1,m nµ

2n· p1,m
, (2.2)

wherenµ is an auxiliary light-like vector (n2 = 0), which parametrizes how the collinear limit is
approached, andp1,m = p1+ · · ·+ pm. The longitudinal-momentum fractionszi are

zi =
n· pi

n· P̃
=

n· pi

n· p1,m
, i ∈C , (2.3)

and they fulfill the constraint∑m
i=1 zi = 1, with pµ

i → zi P̃µ(i ∈C) in the collinear limit. According
to our notation,pµ

i is theoutgoingmomentum in the scattering amplitude, and the time component
(‘energy’) p0

i is positive (negative) for a final-state (initial-state) parton. In the time-like (TL)
collinear region all the parton subenergies in Eq. (2.1) arepositive and 1> zi > 0; in all the other
kinematical configurations, we are dealing with the space-like (SL) collinear region. Therefore, in
the TL case,all the collinear partons are either final-state partons or initial-state partons. In the SL
case, at least one collinear parton is in the initial state and, necessarily, one or more partons are in
the final state. The SL collinear limit is typically encountered by considering initial-state radiation
in hadron collision processes.

In the multiparton collinear limit the matrix elementM of the scattering process withn exter-
nal partons (n> m) fulfills the all-order generalized factorization formula [17]

|M 〉 ≃ Sp(p1, . . . , pm; P̃; pm+1, . . . , pn) |M 〉 , (2.4)

whereSp is the all-order splitting matrix, which captures the dominant singular behaviour in the
multiparton collinear limit, andM = M (P̃, pm+1, . . . , pn) is the reduced matrix element, which is
obtained from the original matrix elementM by replacing themcollinear partonsA1, . . . ,Am with
a single partonA, which carries the momentum̃P. The matrix element and the splitting matrix
satisfy the perturbative (loop) expansion:

M = M
(0)+M

(1)+M
(2)+ . . . , (2.5)

Sp = Sp(0)+Sp(1)+Sp(2)+ . . . , (2.6)

where the superscripts(k) (k = 0,1,2, . . . ) refer to the order (number of loops) of the perturbative
expansion. The splitting matrix is expected to be universaland process independent (strictly fac-
torized), namely, it should depend on the momenta and quantum numbers (flavour, colour, spin)
of the external collinear partons only. Nonetheless, according to Eq. (2.4), the splitting matrix can
also acquire a dependence on thenon-collinearpartons. Strict collinear factorization holds at the
tree-level (in both the TL and SL regions):

Sp(0)(p1, . . . , pm; P̃; pm+1, . . . , pn) = Sp(0)(p1, . . . , pm; P̃) , (TL and SL coll. lim.) , (2.7)

and it also holds (because of colour coherence) in the TL collinear region to all orders:

Sp(p1, . . . , pm; P̃; pm+1, . . . , pn) = Sp(p1, . . . , pm; P̃) , (TL coll. lim.) . (2.8)
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In the SL region, strict collinear factorization is violated [17] at one-loop and higher-loop orders.
We illustrate the violation of strict collinear factorization by mainly considering the infrared

(IR) divergent part of the splitting matrix. The IR structure ofSp is not independent [13, 14, 31, 32,
33] of the IR structure of the QCD amplitudeM . Using dimensional regularization ind = 4−2ε
space-time dimensions, the all-order matrix elementM fulfills the IR recursion relation [34, 35,
36, 37, 38, 39]

|M 〉 = IM(ε) |M 〉+ |M fin.〉 , (2.9)

where the operatorIM(ε) = I(1)M (ε) + I(2)M (ε) + . . . (with perturbative coefficientsI(k)M (ε)) is IR
divergent, while the matrix element termM fin. = M (0)+M (1)fin.+M (2)fin.+ . . . is IR finite and
its first contribution in the perturbative expansion is the complete tree-level matrix elementM (0)

in Eq. (2.5). An expression analogous to Eq. (2.9) holds forM and the corresponding IR operator
IM(ε). Theall-order splitting matrix also fulfills a recursion relation [17]:

Sp = V(ε) Spfin. V
−1
(ε) =

[
1−V(ε) V−1(ε)

]
Sp+V(ε) Spfin. V

−1
(ε) , (2.10)

where the first term in the perturbative expansion of the IR finite splitting matrixSpfin. is the tree-
level splitting matrixSp(0) (Spfin. = Sp(0)+Sp(1)fin.+Sp(2)fin.+ . . .), and

V−1(ε) = 1− I(ε) , V
−1
(ε) = 1− I(ε) , (2.11)

whereI andI are obtained from the collinear limit of the IR operatorsIM andIM, respectively. Up
to two loops, the expansion of the coefficient of the first termin the right-hand side of Eq. (2.10)
reads 1−V(ε) V−1(ε) = I(1)mC(ε)+ I(2)mC(ε)+O(α3

S), where

I(1)mC(ε) = I(1)(ε)− I
(1)
(ε) , (2.12)

I(2)mC(ε) = I(2)(ε)− I
(2)
(ε)+ I

(1)
(ε)

(
I(1)(ε)− I

(1)
(ε)

)
. (2.13)

The IR operators in Eqs. (2.12) and (2.13) have been calculated in Ref. [17] starting from the
known IR structure of scattering amplitudes to two-loop order [34, 36]. In the SL collinear region,
the operatorI(1)mC(ε), which describes the IR divergent part of the one-loop splitting matrix Sp(1),
contains factorization breaking contributions that are proportional to theanti-Hermitianoperator

∆(1)
mC(ε) =

αS(µ2)

2π
iπ
ε ∑

i∈C
j∈NC

Ti ·T j Θ(−zi) sign(si j ) , (2.14)

whereNC= {m+ 1, . . . ,n} denotes the set of non-collinear partons, andTk is the colour-charge
matrix of thek-th parton (we are using the general colour space notation ofRef. [40]). The operator
in Eq. (2.14) embodies colour correlations between collinear and non-collinear partons that are
produced by the non-Abelian Coulomb phase, and thus they violate strict collinear factorization.
In the two-parton collinear case, these colour correlations are illustrated in Fig. 1 (left). Note that
the two-parton one-loop SL splitting matrix is known to all orders inε [17] and, therefore, the
result of Ref. [17] is not limited to the treatment of Coulomb-Glauber gluon effects to leading IR
accuracy. For three or more collinear partons, the IR finite part of Sp(1) is unknown (the explicit
calculation for three collinear partons is in progress), but it also contains factorization breaking
contributions similar to those in Eq. (2.14).
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Figure 1: Two-parton factorization breaking correlations at one-loop in hadron–hadron collisions (left).
Three-parton factorization breaking correlations at two-loops,n≥ 4 QCD partons (right).

At two loops, new factorization breaking terms appear in theSL region through the opera-
tor [17]

∆(2;2)
mC (ε) =

(
αS(µ2)

2π

)2(
−

1
2ε2

)
π fabc ∑

i∈C
∑

j,k∈NC
j 6=k

Ta
i Tb

j Tc
k Θ(−zi) sign(si j ) Θ(−sjk)

× ln

(
−

sjP̃ skP̃

sjk µ2 − i0

)
, (2.15)

which contributes (toI(2)mC and) to the IR divergent part ofSp(2). The operator∆(2;2)
mC includes both

Hermitian andanti-Hermitian contributions, and it embodies three-parton correlationsinvolving
one collinear and two non-collinear partons (see Fig. 1 (right)). The Hermitian part also depends
on the size of the non-collinear momenta. The anti-Hermitian part, which depends only on the sign
of the partons subenergies, can be rewritten [17] in terms ofcorrelations between two collinear and
one non-collinear partons.

The breaking of strict collinear factorization in the SL region beyond the tree-level is due
to absorptive contributions originated from the fact that colour coherence is limited by causality,
which distinguishes initial-state from final-state interactions. Lepton-hadron DIS is, however, a
special case since all the non-collinear coloured partons are produced in the final state, and thus
there are no initial-state interactions between collinearand non-collinear partons. The one-loop
and two-loop SL multiparton splitting matrices explicitely calculated in Ref. [17] effectively take a
strictly-factorized form in DIS.

3. Squared amplitudes and cross-sections

The all-order singular behaviour of the squared matrix element|M |2 (summed over the colours
and spins of the external partons) in a generic kinematical configuration ofm collinear partons is
obtained by squaring the generalized factorization formula in Eq. (2.4):

|M |2 ≃ 〈M | P(p1, . . . , pm; P̃; pm+1, . . . , pn) |M 〉 , (3.1)
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where the matrixP is the square of the all-order splitting matrixSp ,

P ≡ [Sp ]† Sp , (3.2)

and it satisfies a loop expansion similar to Eq. (2.6), with perturbative coefficientsP(k) (k =

0,1,2, . . .).

The splitting matrix in hadron–hadron collision processesbreaks strict collinear factorization
beyond the tree-level. However, owing to their absorptive origin, the factorization breaking effects
partly cancel forsquared amplitudes, and thus a violation of collinear factorization in physical
observables is not directly implied. Factorization breaking contributions can cancel either in the
squared splitting matrixP, after taking the expectation value with the reduced matrixelement in
Eq. (3.1), or even among different partonic processes with different number of external partons
contributing to the same physical cross-section at a given order.

The tree-level collinear matrixP(0) is obviously strictly factorized also in the SL region. The
divergent part ofP(1) is strictly factorized because the factorization breakingoperator in Eq. (2.14)
is anti-Hermitian. In the two-parton collinear limit also the completeP(1), including the IR fi-
nite part, is strictly factorized [17], in spite of the fact that Sp(1) violates collinear factorization.
Similarly, the three-parton factorization breaking correlations appearing in the two-parton splitting
matrix Sp(2) (Fig. 1 (right)) survive inP(2) but only for processes withn≥ 5 QCD partons [17].

The expectation value of the two-loop operator∆̃(2)
P (ε) = ∆̃(2)

C (ε)+h.c., which gives the (IR
dominant) factorization breaking contribution to the squared splitting matrixP(2) for the two-parton
collinear limit 1, onto the reduced matrix elementM is

〈M |
(

Sp(0)
)†

∆̃(2)
P (ε) Sp(0) |M 〉= 〈M

(0)
|
(

Sp(0)
)†

∆̃(2)
P (ε) Sp(0) |M

(0)
〉

+

[
〈M

(1)
|
(

Sp(0)
)†

∆̃(2)
P (ε) Sp(0) |M

(0)
〉+c.c.

]
+higher orders. (3.3)

Although ∆̃(2)
P is not vanishing, its lowest-order expectation value (i.e., the first term on the right-

hand side of Eq. (3.3)) vanishes inpureQCD [18] (i.e., if the lowest-order reduced matrix element

M
(0)

is produced by tree-level QCD interactions). Note however that this contribution would be
non-vanishing, for instance, for tree-level quark–quark scattering produced by electroweak inter-
actions (with CP-violating electroweak couplings and/or finite width of theZ andW± bosons), or
if the tree-level QCD scattering is supplemented with one-loop (pure) QED radiative corrections.

Therefore, as a matter of principle, it remains true that theoperator∆̃(2)
P explicitly uncovers

two-loopQCD effects that lead to violation of strict collinear factorization at the squared amplitude
level. Moreover, the second term in the right-hand side of Eq. (3.3) is not vanishing and contributes
to the SL collinear limit ofthree-loopQCD squared amplitudes, together with the factorization
breaking effect produced byP(3) and highlighted independently in Refs. [17, 18]. In the case
of scattering amplitudes withn = 5 QCD partons, the colour correlation structure of these two
factorization breaking contributions at three loops is analogous to the commutator structures that

1The operator̃∆(2)
C (ε), which is computed in Ref. [17], is analogous to the multiparton collinear operator∆(2;2)

mC (ε)
but it includes also the subdominant 1/ε poles and some finite terms to all orders inε, which are known in the two-parton
collinear configuration.
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were found in the N4LO computation of super-leading logarithms in ‘gaps–between–jets’ cross
sections [22].

4. Summary

Collinear factorization has been generalized to all ordersfor kinematical configurations where
two or more external partons become collinear, and explicitresults on one-loop and two-loop (and
three-loop) amplitudes for both the two-parton and multiparton collinear limits have been presented
[17]. In the space-like region strict factorization is violated beyond the tree-level for scattering
amplitudes. For squared amplitudes the strict-factorization breaking terms partly cancel, but the
remaining effects still lead to logarithmically-enhancedcontributions at high perturbative orders
and challenge the validity of factorization theorems of mass (collinear) singularities.
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