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1. Introduction

A central topic in QCD and, more generally, in gauge field thesois the structure of infrared
(virtual, soft and collinear) singularities of the pertatilve scattering amplitudes. The divergent or
singular behaviour of scattering amplitudes is describeddsrespondindgactorization formulae
and it is captured by factors that have a high degree of waliey or, equivalently, a minimal
process dependence (i.e. a minimal dependence on the speeifiering amplitude).

In the following, we consider the factorization formulaesdebing the singular behaviour
of QCD amplitudes in kinematical configurations where twonarre external-parton momenta
become collinear. In the case of two collinear partons atrée level, the collinear-factorization
formula for QCDsquared amplitudewas first derived in Ref. [1]. The corresponding factoriaati
for QCD amplitudeswas introduced in Refs. [2, 3]. At the tree level, the mudtipbllinear limit
of three, four or more partons has been studied [4, 5, 6, 7018pbdth amplitudes and squared
amplitudes. In the case ane-loopQCD amplitudes, collinear factorization was introduced in
Refs. [9, 10, 11, 12], by explicitly treating the collineamit of two partons. Explicit, though
partial, results for the triple collinear limit of one-lo@mplitudes were presented in Ref. [13]. The
two-parton collinear limit otwo-loopamplitudes was explicitly computed in Refs. [14, 15]. The
structure of collinear factorization of higher-loop antydies is discussed in Refs. [16, 17, 18].

The singular collinear factors are customarily expectedependonly on the momenta and
guantum numbers (flavour, colour, spin) of the collineatqres, with no dependence on the ex-
ternal non-collinear partons. This feature of collinear factorization is dedo#s strict collinear
factorization, and it is generally assumed to be valid inddleulation of cross-sections in hadron—
hadron collisions from the convolution of universal (ijgrpcess independent) parton distribution
functions with the hard-scattering cross-section. Sudatinear factorization, however, is vio-
lated beyond the tree-level for amplitudessjpace-likecollinear configurations [17]. The violation
is originated [17, 18] by long-wavelength absorptive cimiions (such as those produced by
Coulomb-Glauber gluons [19, 20, 21, 22, 23, 24, 25]) thataby disconnect initial-state and
final-state interactions, thus limiting the factorizatif@atures due to colour coherence. Owing
to the absorptive (‘imaginary’) origin of the violation ofrigt factorization, the effect is partly
canceled at the level afquared amplitudes Indeed, such a cancellation is complete up to the
next-to-leading order (NLO). Nonetheless, strict facation is violated at higher orders. This
challenges the validity of the factorization theorem of sméllinear) singularities [26, 27] and
related issues in the context of the factorization of trers®-momentum dependent distributions
[28, 29, 30], and it can produce logarithmically-enhancadiative corrections [22, 17] to hard-
scattering processes in hadron—hadron collisions.

2. Generalized collinear factorization at all orders

A set{pi,...,pm} Of m(m > 2) parton momenta approaches the multiparton collineait lim
when they become parallel. In this limit all the parton sidygies

se=(pi+p)?, with ifeC={1...m}, (2.1)
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are of thesameorder and vaniskimultaneously4, 5]. The collinear direction is defined through
the light-like vector

PLm
2n- pl,m '

wherent is an auxiliary light-like vectorr = 0), which parametrizes how the collinear limit is
approached, andym = p1+ - - + Pm. The longitudinal-momentum fractiorzsare

_n-p_ n-p
n-pP N-P1m '

PH = pf | — (2.2)

Z ieC, (2.3)
and they fulfill the constraing™, z = 1, with p' — z P(i € C) in the collinear limit. According
to our notationp! is theoutgoingmomentum in the scattering amplitude, and the time comgonen
(‘energy’) p is positive (negative) for a final-state (initial-state)rpa. In the time-like (TL)
collinear region all the parton subenergies in Eq. (2.1)pagtive and 1> z > 0; in all the other
kinematical configurations, we are dealing with the spéa{|SL) collinear region. Therefore, in
the TL caseall the collinear partons are either final-state partons dalrstate partons. In the SL
case, at least one collinear parton is in the initial statk ancessarily, one or more partons are in
the final state. The SL collinear limit is typically encouste by considering initial-state radiation
in hadron collision processes.

In the multiparton collinear limit the matrix element’ of the scattering process withexter-
nal partonsif > m) fulfills the all-order generalized factorization formula [17]

’%> =~ Sp(p]nvpm:ﬁ: pm+la7pn) ’%> B (24)

whereSp is the all-order splitting matrix, which captures the doarihsingular behaviour in the
multiparton collinear limit, and# = .# (P, pm.1, - - -, Pn) is the reduced matrix element, which is
obtained from the original matrix element’ by replacing then collinear partong\y, ..., A, with

a single partor, which carries the momentuf®. The matrix element and the splitting matrix
satisfy the perturbative (loop) expansion:

M= MO+ Y+ . (2.5)

Sp=5p 9 +spW 4 5@ 4., (2.6)
where the superscript&) (k= 0,1,2,...) refer to the order (number of loops) of the perturbative
expansion. The splitting matrix is expected to be univeasa process independent (strictly fac-
torized), namely, it should depend on the momenta and qoantumbers (flavour, colour, spin)
of the external collinear partons only. Nonetheless, atingrto Eq. (2.4), the splitting matrix can

also acquire a dependence on tum-collinearpartons. Strict collinear factorization holds at the
tree-level (in both the TL and SL regions):

SPO(pa, ..., PmiP; Pty Pn) =SSP (pa,...,pm;P), (TL and SL coll lim.), (2.7)

and it also holds (because of colour coherence) in the Tlinealt region to all orders:

SP(P1,- -+, PP Pty - -5 Pn) = SP(P1,..., pmiP),  (TL coll. lim.) . (2.8)
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In the SL region, strict collinear factorization is violdtgl7] at one-loop and higher-loop orders.

We illustrate the violation of strict collinear factorizat by mainly considering the infrared
(IR) divergent part of the splitting matrix. The IR struatuwf Sp is not independent [13, 14, 31, 32,
33] of the IR structure of the QCD amplitude’. Using dimensional regularization th= 4 — 2¢
space-time dimensions, the all-order matrix elementfulfills the IR recursion relation [34, 35,
36, 37, 38, 39]

) =\w(e) |4) + |.A™) (2.9)
where the operatory (&) = Iﬁ)(s) + Iﬁf)( €) + ... (with perturbative coeff|C|ent$ ( ))is IR
divergent, while the matrix element ternt " = //ﬂ )+ O 2 is IR finite and

its first contribution in the perturbative expansion is tioenplete tree-level matrix elemen (0
in Eg. (2.5). An expression analogous to Eq. (2.9) holds£6and the corresponding IR operator
I (€). Theall-order splitting matrix also fulfills a recursion relation [17]:

Sp=V(e) Sp™ V' (e) = [1-V(e) V H(e)] Sp+V(e) Sp™ V (e), (2.10)

where the first term in the perturbative expansion of the IRefisplitting matrixSp™ is the tree-
level splitting matrixSp(© (Spfi™ = Spl@ + gpMfin- 4 gp@fin- .y and

Vie)=1-1(e), V Ye)=1-T(¢), (2.11)
wherel andl are obtained from the collinear limit of the IR operatbysandlsz, respectively. Up
to two loops, the expansion of the coefficient of the first témrthe right-hand side of Eq. (2.10)
reads 1-V(g) V-1(g) = 104(¢) +112L(e) + 0(al), where

L) = 10(e) T (e) (2.12)
@ () = 1?2(e) =T () + TP (e) (|<1>(s) ) <1>(g)) . (2.13)

The IR operators in Egs. (2.12) and (2.13) have been cadzllatRef. [17] starting from the
known IR structure of scattering amplitudes to two-loopesriB4, 36]. In the SL collinear region,
the operatoﬂ,(]ﬂ:(s), which describes the IR divergent part of the one-loop timdjtmatrix Sp*)
contains factorization breaking contributions that apprtional to theanti-Hermitianoperator

MY (e) = Z Ti-T; ©(—2z) sign(s;) . (2.14)
jSNC

whereNC = {m+1,...,n} denotes the set of non-collinear partons, apds the colour-charge
matrix of thek-th parton (we are using the general colour space notati®ebf[40]). The operator
in Eq. (2.14) embodies colour correlations between cddlirend non-collinear partons that are
produced by the non-Abelian Coulomb phase, and thus theégtgistrict collinear factorization.
In the two-parton collinear case, these colour correlatiare illustrated in Fig. 1 (left). Note that
the two-parton one-loop SL splitting matrix is known to aftlers ine [17] and, therefore, the
result of Ref. [17] is not limited to the treatment of Couloi@iauber gluon effects to leading IR
accuracy. For three or more collinear partons, the IR fingte pf Sp'Y is unknown (the explicit
calculation for three collinear partons is in progress}, ibalso contains factorization breaking
contributions similar to those in Eq. (2.14).
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Figure 1: Two-parton factorization breaking correlations at oneglan hadron—hadron collisions (left).
Three-parton factorization breaking correlations at ta@ps,n > 4 QCD partons (right).

At two loops, new factorization breaking terms appear in $ieregion through the opera-
tor [17]

2
22, (0s(u?) 1 arbrc N i .
AL (e) = ( o ~ 5.z ) Tianc ie; jngCTi T T ©(—2) sign(sj) ©(—sjk)

j#k

< In (- SS"_ﬁZf—io> , (2.15)

which contributes (toff)c and) to the IR divergent part @&?. The operatoﬂff;cz) includes both

Hermitian and anti-Hermitian contributions, and it embodies three-parton correlatiomslving
one collinear and two non-collinear partons (see Fig. Infj)g The Hermitian part also depends
on the size of the non-collinear momenta. The anti-Hermitiart, which depends only on the sign
of the partons subenergies, can be rewritten [17] in ternesiwElations between two collinear and
one non-collinear partons.

The breaking of strict collinear factorization in the SL imag beyond the tree-level is due
to absorptive contributions originated from the fact thalbar coherence is limited by causality,
which distinguishes initial-state from final-state intrans. Lepton-hadron DIS is, however, a
special case since all the non-collinear coloured partoagrduced in the final state, and thus
there are no initial-state interactions between collirmad non-collinear partons. The one-loop
and two-loop SL multiparton splitting matrices explicitelalculated in Ref. [17] effectively take a
strictly-factorized form in DIS.

3. Squared amplitudes and cross-sections

The all-order singular behaviour of the squared matrix eleti/# |? (summed over the colours
and spins of the external partons) in a generic kinematicafiguration ofm collinear partons is
obtained by squaring the generalized factorization foenmlEq. (2.4):

M2 ~ (| P(P1,-- -, Pmi P; Pmits-- -, Pn) [A) (3.1)
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where the matriP is the square of the all-order splitting matfp,

P

[Sp]"sp, (3.2)

and it satisfies a loop expansion similar to Eq. (2.6), withtyseative coefficientP™ (k =
0,1,2,...).

The splitting matrix in hadron—hadron collision processesaks strict collinear factorization
beyond the tree-level. However, owing to their absorptirigio, the factorization breaking effects
partly cancel forsquared amplitudesand thus a violation of collinear factorization in physica
observables is not directly implied. Factorization bregkcontributions can cancel either in the
squared splitting matri®, after taking the expectation value with the reduced magi@ment in
Eqg. (3.1), or even among different partonic processes wiftardnt number of external partons
contributing to the same physical cross-section at a givearo

The tree-level collinear matriR(? is obviously strictly factorized also in the SL region. The
divergent part oP is strictly factorized because the factorization breakipgrator in Eq. (2.14)
is anti-Hermitian. In the two-parton collinear limit alsbet completeP?, including the IR fi-
nite part, is strictly factorized [17], in spite of the fatiat Sp'™ violates collinear factorization.
Similarly, the three-parton factorization breaking ctatiens appearing in the two-parton splitting
matrix Sp'? (Fig. 1 (right)) survive inP@ but only for processes with > 5 QCD partons [17].

The expectation value of the two-loop opera&@(s) = Z(Cz>(s) + h.c., which gives the (IR
dominant) factorization breaking contribution to the sgaisplitting matrixP(? for the two-parton
collinear limit*, onto the reduced matrix element is

(A | (Slo“”)T AP (e) sp [7) = (" (s|o<°>)T 2 (e) 5p© [7%)

_ - _
+ {(///(1)\ (Sp(0)> A (g) sp© ]//Z(O)>+c.c.] + higher orders. (3.3)

Although 59 is not vanishing, its lowest-order expectation value ,(ifee first term on the right-
hand side of Eq. (3.3)) vanishespare QCD [18] (i.e., if the lowest-order reduced matrix element
](@ is produced by tree-level QCD interactions). Note howekat this contribution would be
non-vanishing, for instance, for tree-level quark—quarittering produced by electroweak inter-
actions (with CP-violating electroweak couplings and/oité width of theZ andW* bosons), or
if the tree-level QCD scattering is supplemented with aragpl(pure) QED radiative corrections.
Therefore, as a matter of principle, it remains true thatdperatorﬁ,(f) explicitly uncovers
two-loopQCD effects that lead to violation of strict collinear fagtation at the squared amplitude
level. Moreover, the second term in the right-hand side of E@) is not vanishing and contributes
to the SL collinear limit ofthree-loopQCD squared amplitudes, together with the factorization
breaking effect produced by and highlighted independently in Refs. [17, 18]. In the case
of scattering amplitudes with =5 QCD partons, the colour correlation structure of these two
factorization breaking contributions at three loops islegaus to the commutator structures that

The operatoﬁéz)(s), which is computed in Ref. [17], is analogous to the multiparcollinear operatoﬂg;cz)(s)

but it includes also the subdominantelpoles and some finite terms to all ordergjnwhich are known in the two-parton
collinear configuration.



Factorization violation in the multiparton collinear lirni German Rodrigo

were found in the RLO computation of super-leading logarithms in ‘gaps—betvgets’ cross
sections [22].

4. Summary

Collinear factorization has been generalized to all orétarkinematical configurations where
two or more external partons become collinear, and expksitilts on one-loop and two-loop (and
three-loop) amplitudes for both the two-parton and muitgacollinear limits have been presented
[17]. In the space-like region strict factorization is \d@t#d beyond the tree-level for scattering
amplitudes. For squared amplitudes the strict-factddmabreaking terms partly cancel, but the
remaining effects still lead to logarithmically-enhancashtributions at high perturbative orders
and challenge the validity of factorization theorems of sn@sllinear) singularities.
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