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FORM 4.0 J.A.M.Vermaseren

1. Introduction

Over the past 12 years FORM was available as version 3.0-3.3 [1, 2]. This version was signif-
icantly more powerful than version 2. But also these versions needed extensions. More recently
there were a few opportunities to hire extra people for special contributions and development picked
up speed. A number of much needed but very labor intensive projects were undertaken and com-
pleted. This marked a good point to clean up the whole program, make it open source and bring it
out as a new version.

On March 29 version 4.0 was released. It took much more time than anticipated to prepare
this release, because there are quite a few new features and the debugging was a slow procedure.
In addition making the source code available and easy to install took a lot of work.

Most work for version 4.0 has been put in by Jan Kuipers, Takahiro Ueda, Jens Vollinga and
me. Other people (and Jens) who worked on FORM in the past have left the field and the current
team consists of Jan Kuipers, Takahiro Ueda and me. Jan will leave in the autumn. This means that
the speed of advances will be slowed down until there are new opportunities to hire good people.

Jens Vollinga has added a number of very nice features to FORM , including systems inde-
pendent .sav files, checkpoints (points from which a program can be restarted if it crashes), much
documentation, the forum and he designed much of the open source infrastructure.

Jan Kuipers has made the factorization and polynomial libraries and is currently working on a
completely new method for output simplification[7, 8].

Takahiro Ueda has been hired by Karlsruhe on DFG money with the task to improve the
parallelization of FORM . The project is to combine TFORM and ParFORM to make use of clusters
of multicore computers. This project is still in its infancy, because his first task was to make
ParFORM complete. This has been finished now. He has also taken over the task to manage the
open source infrastructure.

This talk will take us through a number of new features and in the end give a few hints about
what the future might bring.

The first thing the user will notice is the new header.

FORM 4.0 (Mar 29 2012) 64-bits

Run: Wed Apr 4 14:23:50 2012

The mentioning of the 64/32-bits version is for version 4, because we are in a period that many
people still use 32-bits computers or operating systems. Other headers are

TFORM 4.0 (Mar 29 2012) 64-bits 8 workers

Run: Wed Apr 4 14:24:22 2012

or

ParFORM 4.0 (Mar 29 2012) 64-bits 8 workers

Run: Wed Apr 4 14:32:45 2012

2. Factorization

The first feature we are going to look at is one that many people have asked for in the past.
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It should be realized that factorization is a subject that many mathematicians have given at-
tention to. In addition big commercial programs have spent much effort on making good packages
for this. Hence one should not expect to outperform other packages. The best model here is to
look whether there are packages under the GNU license that have been created and are maintained
by good mathematicians. Unfortunately we could not find any that deal with more than a single
variable. The better packages are all closed source and part of a commercial system. This means
we had to make our own. But then we could optimize it for what we anticipate that the use will be.

Symbols x,y,z;

CFunction f;

Off Statistics;

Format nospaces;

Local F = f((x+y)*(x+z)*(x*y+4*z^2+3*y*z^4-7*x^2*y));

Print;

.sort

F=

f(4*y*z^3+3*y^2*z^5+4*x*z^3+4*x*y*z^2+3*x*y*z^5+x*y^2*z+3*x*y^2*
z^4+4*x^2*z^2+x^2*y*z+3*x^2*y*z^4+x^2*y^2-7*x^2*y^2*z+x^3*y-7*x^3

*y*z-7*x^3*y^2-7*x^4*y);

FactArg,f;

Print;

.end

F=

f(y+x,z+x,4*z^2+3*y*z^4+x*y-7*x^2*y);

The first example shows the factorization of function arguments. This is probably the most
important use in complicated calculations. The FactArg statement is natural for this.

Factorization of expressions is a bit more complicated. How to (re)present the results?

#define MAX "5"

#define TERMS "6"

#define POW "3"

Symbols a1,...,a‘MAX’,j;

Off Statistics;

Format NoSpaces;

#do i = 1,‘MAX’

Local F‘i’ = sum_(j,1,‘TERMS’,random_(‘TERMS’)*
<a1^random_(‘POW’)/a1>*...*<a‘MAX’^random_(‘POW’)/a‘MAX’>);

#enddo

Print;

.sort

F1=

5*a2*a4+3*a2*a3^2*a4^2*a5+6*a1*a2*a5^2+5*a1*a2*a3^2*a4^2+6*a1*
a2^2*a3*a4^2+a1^2*a4^2*a5;

F2=
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2*a3^2*a4^2*a5+2*a1*a5+2*a1^2*a3^2*a4^2+2*a1^2*a2^2*a5^2+4*a1^2*
a2^2*a3*a4^2*a5^2+a1^2*a2^2*a3^2*a4*a5^2;

F3=

6*a3^2*a4*a5^2+5*a2*a3*a4^2+a1*a2*a3^2*a5+a1^2*a3^2*a4^2*a5+4*
a1^2*a2*a3*a4^2+a1^2*a2^2*a3^2*a4^2;

F4=

6*a2^2*a4^2*a5+4*a2^2*a3^2*a4*a5^2+4*a1*a2*a3^2*a4^2+a1^2*a2*a3+6

*a1^2*a2*a3^2*a5^2+a1^2*a2^2*a5^2;

F5=

5*a2*a3^2*a4^2*a5+3*a1*a3^2*a4^2+2*a1*a2*a3*a4^2*a5+a1^2*a3+5*
a1^2*a2^2*a3^2*a4*a5+a1^2*a2^2*a3^2*a4*a5^2;

On Statistics;

Drop;

Local F = F1*...*F‘MAX’;

.sort

Time = 0.02 sec Generated terms = 7776

F Terms in output = 5540

Bytes used = 158532

Factorize;

Print;

.end

Time = 0.02 sec Generated terms = 5540

F Terms in output = 5540

Bytes used = 158532

Time = 1.65 sec Generated terms = 33

F Terms in output = 33

factorize Bytes used = 1684

F=

(a3)

*(a3)

*(6*a3*a4*a5^2+5*a2*a4^2+a1*a2*a3*a5+a1^2*a3*a4^2*a5+4*a1^2*a2*
a4^2+a1^2*a2^2*a3*a4^2)

*(2*a3^2*a4^2*a5+2*a1*a5+2*a1^2*a3^2*a4^2+2*a1^2*a2^2*a5^2+4*a1^2

*a2^2*a3*a4^2*a5^2+a1^2*a2^2*a3^2*a4*a5^2)

*(a2)

*(5*a2*a4+3*a2*a3^2*a4^2*a5+6*a1*a2*a5^2+5*a1*a2*a3^2*a4^2+6*a1*
a2^2*a3*a4^2+a1^2*a4^2*a5)

*(6*a2*a4^2*a5+4*a2*a3^2*a4*a5^2+4*a1*a3^2*a4^2+a1^2*a3+6*a1^2*
a3^2*a5^2+a1^2*a2*a5^2)

*(5*a2*a3*a4^2*a5+3*a1*a3*a4^2+2*a1*a2*a4^2*a5+a1^2+5*a1^2*a2^2*
a3*a4*a5+a1^2*a2^2*a3*a4*a5^2);

Factorization is considered a ‘state’ in which the expression exists. It is either factorized or
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unfactorized. Conversion takes place at the end of the module after the expression has been pro-
cessed and sorted. Hence we have two output statistics. The second one refers to the factorization
procedure. To store the factorized expression we use the FORM bracket system with the built in
symbol factor_. This allows also a way to refer to the brackets.

The execution time depends critically on how complicated the expression is. If we raise the
powers of the variables we can see the effect:

#define MAX "5"

#define TERMS "6"

#define POW "4"

Symbols a1,...,a‘MAX’,j;

Off Statistics;

Format NoSpaces;

#do i = 1,‘MAX’

Local F‘i’ = sum_(j,1,‘TERMS’,random_(‘TERMS’)*
<a1^random_(‘POW’)/a1>*...*<a‘MAX’^random_(‘POW’)/a‘MAX’>);

#enddo

Print;

.sort

F1=

6*a1^2*a2*a3^2*a5+6*a1^2*a2*a3^3*a4^2*a5+3*a1^2*a2^2*a3^3*a5^2+

a1^2*a2^3*a3*a4^3*a5^3+5*a1^3*a2^3*a3*a4^3*a5+5*a1^3*a2^3*a3^2*a4

*a5^2;

F2=

a4^2*a5+2*a1*a2^3*a3^3*a5+4*a1^2*a2*a3*a5^2+2*a1^2*a2*a3^3*a4^3*
a5^3+2*a1^2*a2^2*a4*a5+2*a1^3*a2^2*a3*a4^3*a5;

F3=

5*a2+6*a2^3*a4*a5^3+4*a1*a3*a4^3*a5+a1*a2^2*a4*a5+a1*a2^3*a3^3*
a4^3*a5+a1^3*a3^3*a4^3;

F4=

6*a2*a3^2*a4^2*a5^2+a2^3*a3^3*a4^3*a5+4*a1*a2*a3^3*a4^2*a5^2+4*a1

*a2^2*a3^3*a4^3*a5+a1^2*a2^2*a3*a5^2+6*a1^3*a2^2*a3*a5;

F5=

3*a1*a2^3*a3^3*a4^2+a1^2*a3*a4^2*a5^3+2*a1^2*a2*a4+a1^2*a2*a3*a4*
a5^2+5*a1^2*a2^2*a4^2+5*a1^3*a3^2*a4^3;

On Statistics;

Drop;

Local F = F1*...*F‘MAX’;

.sort

Time = 0.01 sec Generated terms = 7776

F Terms in output = 7125

Bytes used = 213980
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Factorize;

Print;

.end

Time = 0.01 sec Generated terms = 7125

F Terms in output = 7125

Bytes used = 213980

Time = 77.67 sec Generated terms = 41

F Terms in output = 41

factorize Bytes used = 2116

F=

(a5)

*(a5)

*(a5)

*(a4)

*(a4^2+2*a1*a2^3*a3^3+4*a1^2*a2*a3*a5+2*a1^2*a2*a3^3*a4^3*a5^2+2*
a1^2*a2^2*a4+2*a1^3*a2^2*a3*a4^3)

*(a3)

*(a3)

*(6*a3+6*a3^2*a4^2+3*a2*a3^2*a5+a2^2*a4^3*a5^2+5*a1*a2^2*a4^3+5*
a1*a2^2*a3*a4*a5)

*(6*a3*a4^2*a5+a2^2*a3^2*a4^3+4*a1*a3^2*a4^2*a5+4*a1*a2*a3^2*a4^3

+a1^2*a2*a5+6*a1^3*a2)

*(a2)

*(a2)

*(5*a2+6*a2^3*a4*a5^3+4*a1*a3*a4^3*a5+a1*a2^2*a4*a5+a1*a2^3*a3^3*
a4^3*a5+a1^3*a3^3*a4^3)

*(3*a2^3*a3^3*a4+a1*a3*a4*a5^3+2*a1*a2+a1*a2*a3*a5^2+5*a1*a2^2*a4

+5*a1^2*a3^2*a4^2)

*(a1)

*(a1)

*(a1);

It is also possible to put expressions in the input in factorized form:

Symbols x,y,z;

LocalFactor F = (x+1)*(x+y)*(z+2)^2*((x+2)*(y+2));

Print;

.sort

Time = 0.00 sec Generated terms = 12

F Terms in output = 12

Bytes used = 448

F =

( 1 + x )

* ( y + x )
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* ( 2 + z )

* ( 2 + z )

* ( 4 + 2*y + 2*x + x*y );

id x = -y;

Print;

.sort

Time = 0.00 sec Generated terms = 12

F Terms in output = 8

Bytes used = 300

F =

( 1 - y )

* ( 0 )

* ( 2 + z )

* ( 2 + z )

* ( 4 - y^2 );

UnFactorize F;

Print;

.end

Time = 0.00 sec Generated terms = 8

F Terms in output = 8

Bytes used = 300

Time = 0.00 sec Generated terms = 2

F Terms in output = 2

unfactorize Bytes used = 84

Time = 0.00 sec Generated terms = 0

F Terms in output = 0

unfactorize Bytes used = 4

F = 0;

This example shows also that if during further processing a factor becomes zero, we still keep
the expression and the other factors. If, on the other hand, we unfactorize the expression, we end
up with zero of course.

Factorization of $-expressions is yet another case. Here we do not have the bracket system.
Neither do we have the possibility to store the factors as arguments. On the other hand, we are not
limited by the maximum size of terms.

#define MAX "5"

#define TERMS "6"

#define POW "3"

Symbols a1,...,a‘MAX’,j;
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Off Statistics;

Format NoSpaces;

#do i = 1,‘MAX’

#$v‘i’ = sum_(j,1,‘TERMS’,random_(‘TERMS’)*\

<a1^random_(‘POW’)/a1>*...*<a‘MAX’^random_(‘POW’)/a‘MAX’>);

#enddo

#$V = <$v1>*...*<$v‘MAX’>;

.sort

#factdollar $V

#write <> "Factors in $V: ‘$V[0]’";

Factors in $V: 8

#do i = 1,‘$V[0]’

#write <> " Factor ‘i’: %$",$V[‘i’];

Factor 1: a3

#enddo

Factor 2: a3

Factor 3: 6*a3*a4*a5^2+5*a2*a4^2+a1*a2*a3*a5+a1^2*a3*a4^2*a5+4*a1^2*
a2*a4^2+a1^2*a2^2*a3*a4^2

Factor 4: 2*a3^2*a4^2*a5+2*a1*a5+2*a1^2*a3^2*a4^2+2*a1^2*a2^2*a5^2+4*
a1^2*a2^2*a3*a4^2*a5^2+a1^2*a2^2*a3^2*a4*a5^2

Factor 5: a2

Factor 6: 5*a2*a4+3*a2*a3^2*a4^2*a5+6*a1*a2*a5^2+5*a1*a2*a3^2*a4^2+6*
a1*a2^2*a3*a4^2+a1^2*a4^2*a5

Factor 7: 6*a2*a4^2*a5+4*a2*a3^2*a4*a5^2+4*a1*a3^2*a4^2+a1^2*a3+6*a1^

2*a3^2*a5^2+a1^2*a2*a5^2

Factor 8: 5*a2*a3*a4^2*a5+3*a1*a3*a4^2+2*a1*a2*a4^2*a5+a1^2+5*a1^2*a2

^2*a3*a4*a5+a1^2*a2^2*a3*a4*a5^2

.end

3.25 sec out of 3.25 sec

We refer to the factors as if they are array elements. The zero element tells the number of
factors.

Of course $-variables can be used in two ways: during compilation as shown above, and during
execution:

Symbols x,y,z;

CFunction f;

Off Statistics;

Format nospaces;

Local F = f((x+y)*(x+z)*(x*y+4*z^2+3*y*z^4-7*x^2*y));

Print;

.sort

F=

f(4*y*z^3+3*y^2*z^5+4*x*z^3+4*x*y*z^2+3*x*y*z^5+x*y^2*z+3*x*y^2*
z^4+4*x^2*z^2+x^2*y*z+3*x^2*y*z^4+x^2*y^2-7*x^2*y^2*z+x^3*y-7*x^3

*y*z-7*x^3*y^2-7*x^4*y);

id f(x?$v) = 1;
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FactDollar,$v;

do $i = 1,$v[0];

Print " Factor %$ in $v = %$",$i,$v[$i];

$t = nterms_($v[$i]);

Print " There are %$ terms in factor %$",$t,$i;

enddo;

.end

Factor 1 in $v = z+x

There are 2 terms in factor 1

Factor 2 in $v = 4*z^2+3*y*z^4+x*y-7*x^2*y

There are 4 terms in factor 2

Factor 3 in $v = y+x

There are 2 terms in factor 3

Here we need an extra supporting facility: the do loop during execution. Its variable is a
$-variable.

Internally the factorization algorithms work only with symbols and numbers. Yet we may use
other objects as well. FORM will replace them temporarily by an internal set of symbols, called the
“extra symbols”. Then, after factorization these are replaced back. Hence the following example
works properly.

Symbols x,y,z;

CFunction f,g;

Off Statistics;

Format nospaces;

Local F = f((x+y)*(x+g(z))*(x*y+4*z^2+3*g(y)*z^4-7*x^2*y));

Print;

.sort

F=

f(4*x*y*z^2+4*x^2*z^2+x^2*y^2+x^3*y-7*x^3*y^2-7*x^4*y+3*g(y)*x*y*
z^4+3*g(y)*x^2*z^4+3*g(y)*g(z)*y*z^4+3*g(y)*g(z)*x*z^4+4*g(z)*y*
z^2+4*g(z)*x*z^2+g(z)*x*y^2+g(z)*x^2*y-7*g(z)*x^2*y^2-7*g(z)*x^3*
y);

id f(x?$v) = 1;

FactDollar,$v;

do $i = 1,$v[0];

Print " Factor %$ in $v = %$",$i,$v[$i];

$t = nterms_($v[$i]);

Print " There are %$ terms in factor %$",$t,$i;

enddo;

.end

Factor 1 in $v = 4*z^2+x*y-7*x^2*y+3*g(y)*z^4

There are 4 terms in factor 1

Factor 2 in $v = y+x

There are 2 terms in factor 2

Factor 3 in $v = x+g(z)

9



P
o
S
(
L
L
2
0
1
2
)
0
3
1

FORM 4.0 J.A.M.Vermaseren

There are 2 terms in factor 3

There are more things that can be said about the factorization, but the talks is supposed to be
finite in time.

3. Rational Polynomials

Another important thing that was missing, was the capability to deal with rational polyno-
mials. This has even led to the introduction of the external channels to use other programs like
FERMAT [3] for this purpose. It would have been nice to have FERMAT in the form of a library,
like zlib (compression) or the GMP [4] (for multiprecision calculations), but that was not to be.
Now we have our own capabilities.

Symbols x,y,z,a,b;

CFunction rat;

Format Nospaces;

Local F = a*rat(x+1,y+1)+a*rat(x+z,y+z)+a*rat(y+z,y-z);

Print;

.sort

Time = 0.00 sec Generated terms = 3

F Terms in output = 3

Bytes used = 476

F=

rat(1+x,1+y)*a+rat(z+y,-z+y)*a+rat(z+x,z+y)*a;

PolyRatFun rat;

Print;

.end

Time = 0.00 sec Generated terms = 3

F Terms in output = 1

Bytes used = 584

F=

a*rat(2*x*y^2-x*y*z+x*y-x*z^2-x*z+y^3+3*y^2*z+2*y^2+3*y*z-z^2,y^3

+y^2-y*z^2-z^2);

Like many things in FORM this is of course limited to the maximum size of the terms. If this
turns out to be a limitation, there are usually other ways to attack the problem. In that case the
numerators and denominators are very big expressions and it is better to store them in separate
expressions or $-variables. These then can be used in the new functions gcd_, div_, rem_ to
obtain results.

The first application of the rational polynomials was to make a new version of the Mincer [5]
library. This version works exact. This means that it does not use expansions in ε . All ε dependence
is put inside the rational polynomial.

#include- minceex.h

Off Statistics;

10
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Format nospaces;

.global

L F = Q.Q^2/p1.p1/p2.p2/p3.p3/p4.p4/p5.p5/p6.p6/p7.p7/p8.p8;

#call integral(be,0)

Print +f +s;

.sort

F=

+GschemeConstants(0,0)*BasicT1Integral*rat(6*ep^3-3*ep^2,2*ep+1)

+GschemeConstants(0,0)^2*GschemeConstants(1,0)*rat(18*ep^2-15*ep+

3,2*ep^2+ep)

+GschemeConstants(0,0)^2*GschemeConstants(2,0)*rat(-128*ep^2+96*
ep-16,6*ep^2+3*ep)

+GschemeConstants(0,0)*GschemeConstants(1,0)*GschemeConstants(2,0

)*rat(84*ep^2-49*ep+7,6*ep^2+3*ep)

;

#call subvalues

~~~Answer in the Gscheme

#call expansion(1)

~~~Answer in the Gscheme

Print +f;

.end

F=

-2*ep^-1*z3-3*z4+12*z3+46*ep*z5+18*ep*z4-32*ep*z3;

As is shown above, there are some constants, which are basic one loop integrals with zero, one
or two insertions and there is a two loop integral of type T1 with one insertion. There is one more
constant which is the basic non-planar integral in three loops.

The first three integrals are known in terms of Γ-functions and can be expanded as far as
wanted.

The T1 integral can be expanded to any precision but that takes more and more time and runs
eventually into the limitation that there are relations between the Multiple Zeta Values and these
are known only to a certain weight [6]. Enough precision is built in for any practical calculations.

The NO integral is more of a problem, but is known to sufficient precision for even 4 loop
calculations.

The above program shows that this exact treatment is quite good because we do not have to
worry about cancellations of powers of ε .

L F1 = GschemeConstants(0,0)^2*GschemeConstants(1,0)*rat(18*ep^2-

15*ep+3,2*ep^2+ep);

L F2 = GschemeConstants(0,0)^2*GschemeConstants(2,0)*rat(-128*ep^

2+96*ep-16,6*ep^2+3*ep);

L F3 = GschemeConstants(0,0)*GschemeConstants(1,0)*
GschemeConstants(2,0)*rat(84*ep^2-49*ep+7,6*ep^2+3*ep);

L F4 = GschemeConstants(0,0)*BasicT1Integral*rat(6*ep^3-3*ep^2,
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2*ep+1);

#call subvalues

~~~Answer in the Gscheme

#call expansion(1)

~~~Answer in the Gscheme

Print +f;

.end

F=

-2*ep^-1*z3-3*z4+12*z3+46*ep*z5+18*ep*z4-32*ep*z3;

F1=

192+3*ep^-4-18*ep^-3+48*ep^-2-96*ep^-1-18*ep^-1*z3-27*z4+108*z3-

384*ep-126*ep*z5+162*ep*z4-288*ep*z3;

F2=

-1024/3-16/3*ep^-4+32*ep^-3-256/3*ep^-2+512/3*ep^-1+256/3*ep^-1*
z3+128*z4-512*z3+2048/3*ep+1024*ep*z5-768*ep*z4+4096/3*ep*z3;

F3=

448/3+7/3*ep^-4-14*ep^-3+112/3*ep^-2-224/3*ep^-1-154/3*ep^-1*z3-

77*z4+308*z3-896/3*ep-546*ep*z5+462*ep*z4-2464/3*ep*z3;

F4=

-18*ep^-1*z3-27*z4+108*z3-306*ep*z5+162*ep*z4-288*ep*z3;

As one can see, there are quite a few terms cancelling between the terms with only one loop
constants.

#include- minceex.h

Off Statistics;

Format nospaces;

.global

L F = Q.Q^3*Q.p2^2/p1.p1^2/p2.p2^2/p3.p3^2/p4.p4/p5.p5/p6.p6/

p7.p7/p8.p8;

#call integral(be,0)

Print +f +s;

.sort

F=

+GschemeConstants(0,0)*BasicT1Integral*rat(162*ep^8+729*ep^7+1008

*ep^6+405*ep^5-60*ep^4-72*ep^3-12*ep^2,8*ep^4+44*ep^3+88*ep^2+76*
ep+24)

+GschemeConstants(0,0)^2*GschemeConstants(1,0)*rat(144*ep^9+960*
ep^8+2418*ep^7+3051*ep^6+1620*ep^5-450*ep^4-690*ep^3-99*ep^2+54*
ep+12,4*ep^7+34*ep^6+118*ep^5+214*ep^4+214*ep^3+112*ep^2+24*ep)

+GschemeConstants(0,0)^2*GschemeConstants(2,0)*rat(-288*ep^9-2640

*ep^8-7486*ep^7-9899*ep^6-5723*ep^5+821*ep^4+2179*ep^3+500*ep^2-

112*ep-32,6*ep^7+51*ep^6+177*ep^5+321*ep^4+321*ep^3+168*ep^2+36*
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ep)

+GschemeConstants(0,0)*GschemeConstants(1,0)*GschemeConstants(2,0

)*rat(-1296*ep^10+16308*ep^9+47592*ep^8+43275*ep^7+2601*ep^6-

20189*ep^5-9321*ep^4+2300*ep^3+1490*ep^2-84*ep-56,96*ep^8+720*
ep^7+2088*ep^6+2844*ep^5+1584*ep^4-180*ep^3-528*ep^2-144*ep)

;

#call subvalues

~~~Answer in the Gscheme

#call expansion(1)

~~~Answer in the Gscheme

Print +f;

.end

F=

-2903/1296-1/18*ep^-2+125/216*ep^-1-1/3*ep^-1*z3-1/2*z4-5/18*z3+

28541/7776*ep+23/3*ep*z5-5/12*ep*z4+467/108*ep*z3;

0.41 sec out of 0.44 sec

The “Mincer Exact” package has been added to the FORM distribution.

4. New Functions

FORM has obtained many new functions. We name them here. Some names are selfevident:

Random_ RanPerm_ Div_ Rem_

Gcd_ Inverse_ FirstTerm_ Prime_

ExtEuclidean_ MakeRational_ NumFactors_ Content_

ExtraSymbol_

A number of these functions are designed for use in future packages, like a package for Gröb-
ner bases. Such bases can often be calculated faster when calculus is over a prime number and in
the end the results over several prime number calculations are combined into a result modulus the
product of these numbers.

Making a decent Gröbner basis package is a major undertaking. Again the better packages
are not suitable for inclusion as a library and are usually part of a commercial product. There is
much heuristics involved to take shortcuts and all of that is kept secret. This means that one has
to develop ones own heuristics. For this reason we have only been experimenting a little bit with
Gröbner bases.

#-

#include- groebner.h

Off Statistics;

ON HighFirst;

.global

Local Poly1 = x1^2 + x2*x3 - 2;

Local Poly2 = x1^2*x3 + x2^3 - 3;
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Local Poly3 = x1*x2 + x3^2 - 5;

#$n = 3;

#write <> "The input polynomials are:"

Print +f;

.sort

#call groebner(Poly,n)

#write <> "The Groebner basis is:"

Print +f;

.end

The above shows what this should look like from the users perspective. The result of this
program is:

#-

The input polynomials are:

Poly1 =

x1^2 + x2*x3 - 2;

Poly2 =

x1^2*x3 + x2^3 - 3;

Poly3 =

x1*x2 + x3^2 - 5;

The Groebner basis is:

Poly1 =

4093136817253*x1 - 999056107380*x3^9 + 3162784725684*x3^8 +

15617604960159*x3^7 - 52374677099676*x3^6 - 78004955176188*x3^5 +

303405612909504*x3^4 + 117232980911431*x3^3 -

685255923260685*x3^2 - 3397254300818*x3 + 498469518662424;

Poly2 =

30*x3^10 - 9*x3^9 - 570*x3^8 + 222*x3^7 + 4173*x3^6 - 1782*x3^5 -

14569*x3^4 + 5523*x3^3 + 24357*x3^2 - 5721*x3 - 15553;

Poly3 =

372103347023*x2 + 159558175470*x3^9 - 307637902881*x3^8 -

2539999354128*x3^7 + 5261771049639*x3^6 + 13722480161265*x3^5 -

31064912209032*x3^4 - 27045529790992*x3^3 + 69969321110925*x3^2

+ 14416898137155*x3 - 48858412479378;

0.10 sec out of 0.11 sec

One can see here that this can run out of hand rather quickly. Of course the secret is in what is
in the library groebner.h. It uses a large number of the new functions.

This is for example a routine that defines an S-polynomial:
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#procedure Spoly(A,B,S);

*

* Procedure defines the S-polynomial of the two polynomials A and B.

* We work with $’s for the intermediate variables because that is

* faster and that way we have to compute the gcd only once and do the

* divisions only once.

*
#$firstA = firstterm_(‘A’);

#$firstB = firstterm_(‘B’);

#$gcdfirst = gcd_($firstA, $firstB);

#if ( isnumerical($gcdfirst) )

Local ‘S’ = 0;

#else

#$nfirstA = $firstA/$gcdfirst;

#$nfirstB = $firstB/$gcdfirst;

Skip;

Local ‘S’ = ‘A’*$nfirstB - ‘B’*$nfirstA;

#endif

.sort

#endprocedure

Note the use of the functions firstterm_ and gcd_. Also the new option isnumerical
in the preprocessor if statement is being used. Another routine:

#procedure MakeInteger(IN,OUT)

*

* Defines the polynomial ‘OUT’ as a multiple of ‘IN’ so that all its

* coefficients are integer.

*
#$MkI = content_(‘IN’);

#inside $MkI

$cMkI = coeff_;

#endinside

Skip;

Drop ‘IN’;

Local ‘OUT’ = ‘IN’/(‘$cMkI’);

.sort

*
#endprocedure

Here we use the function content_ to eventually obtain the GCD of the numerators and the
LCM of the denominators.

Now we hope for volunteers to make a good package.

5. Miscellaneous

The parallel versions TFORM and ParFORM are both fully functional now. Till about a year
ago ParFORM was still missing much of the functionality and was also not very portable. This has
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all been rectified. It is part of the open source distribution. It does however need a proper MPI
installation.

One of the complaints in the past was that .sav files of different executables of FORM were
incompatible. This meant that a .sav file generated on one computer might not be usable on another.
Also new versions would often need extra variables in the .sav file and hence the old files would
be useless. Starting with version 4.0 we have made an attempt to solve these problems. The files
should now be uniform, even between 32-bits and 64-bits versions. In addition we have left much
spare space in the headers to allow for future extensions that would otherwise invalidate old files.

Of course, some files cannot be carried from a 64-bits computer to a 32-bits computer. If we
use x123456, the power is more than the maximum power allowed for symbols on 32-bits systems.
Similarly one can exceed the total number of different objects used in all expressions together. But
those are rather natural limitations and they would occur only in exceptional cases.

Checkpoints are selected points in a FORM program from which the program can be restarted.
One can define many such checkpoints but the program will remember only the last one it has
encountered. This facility allows the user to restart the program when external causes have halted
execution, like a power outage. The user has to define these checkpoints. It is not done automati-
cally.

There is now a forum for FORM users to communicate with each other. To post on the forum
one needs to register. This involves answering an easy question and then waiting till one of the
moderators approves of the registration. This procedure is needed because of SPAM attacks and
organizations having automatic programs for trying to register on forums like this.

The forum is the proper way to report bugs, to ask questions about installation and versions,
or to ask help with certain features or techniques.

For all features in FORM , TFORM and ParFORM holds that we have tried our best to make
them running flawlessly on systems that are available to us. Yet it is not excluded that on other
systems strange things happen. This may be due to errors in the other systems, unanticipated
behaviour, or just insufficiently careful programming on our side. Whenever such a thing occurs
we ask the user to report the problems by means of the forum.

6. What brings the future?

The one line answer to this question is:

Hopefully something spectacular.

Currently we (mainly Jan) are trying to make a system for rewriting outputs for numerical pro-
grams in a way that takes as few operations as possible. For this we will be applying a completely
new method. Hopefully there will be some results in the autumn. Already we have a first order
program which is more classical and gives results similar to Haggies [9] and the external code that
was made for the Grace system [10, 11]. This is not available yet because it needs extra supporting
code and most likely it will change. But I have here one example:

Symbols a1,...,a5,j;

Off Statistics;
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Local F = sum_(j,1,10,random_(4)*a1^(random_(4)-1)*a2^(random_(4)-1)

*a3^(random_(4)-1)*a4^(random_(4)-1)*a5^(random_(4)-1));

Print;

.sort

F =

3*a4^2*a5 + 4*a1^2*a2*a3*a5^2 + 4*a1^2*a2*a3^2*a5 +

2*a1^2*a2*a3^3*a4^2*a5 + 2*a1^2*a2^2*a4*a5 + a1^2*a2^2*a3^3*a5^2

+ 3*a1^2*a2^3*a3*a4^3*a5^3 + 4*a1^3*a2^2*a3*a4^3*a5 +

a1^3*a2^3*a3*a4^3*a5 + a1^3*a2^3*a3^2*a4*a5^2;

ExtraSymbols vector A;

Format O1;

Format Fortran;

#write <> "%E",F;

A(1)=a3*a4**3

A(2)=a1**3

A(3)=a2*A(1)*A(2)

A(4)=4*A(1)*a1

A(5)=2*a4

A(4)=A(4) + A(5)

A(5)=a1**2

A(4)=A(4)*A(5)

A(3)=A(3) + A(4)

A(3)=A(3)*a2

A(4)=a4**2

A(6)=2*A(4)*a3

A(6)=A(6) + 4

A(7)=a3**2

A(6)=A(5)*A(6)*A(7)

A(3)=A(3) + A(6)

A(3)=A(3)*a2

A(1)=3*a5*a2**3*A(1)*A(5)

A(2)=a2*A(2)*a4*A(7)

A(6)=a3**3*A(5)

A(2)=A(2) + A(6)

A(2)=A(2)*a2

A(5)=4*a3*A(5)

A(2)=A(2) + A(5)

A(2)=A(2)*a2

A(1)=A(1) + A(2)

A(1)=A(1)*a5

A(2)=3*A(4)

A(1)=A(1) + A(3) + A(2)

F=A(1)*a5

.end

0.00 sec out of 0.00 sec
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Of course this is not optimal. It is just a first order approximation.
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