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One-loop Feynman Diagrams and Hypergeometric functions.
Within dimensional regularization [1], the algorithm for analytical evaluation of one-loop multilegs
Feynman Diagrams has been described a long time ago [2, 3]. Itincludes two steps: reduction of the
amplitude to a set of master-integrals [2] with following analytical evaluation of master-integrals
via Feynman parameter representation [3]. Due to the appearance of 1/ε terms coming from IR
and/or UV singularities, the NNLO calculation would demandthe knowledge of higher terms in
theε-expansion of the one-loop Feynman Diagrams (see also [4]).The above mentioned technol-
ogy is suitable for the evaluation of the finite part of master-integrals [5, 6]. However, the direct
application of this technique for analytical evaluation ofthe higher-order coefficients in power of
ε gives rise to complicated results [7, 8, 9] even in a simple kinematic. A perspective approach to
the construction of analytical coefficients of theε-expansion of one-loop Feynman Diagrams is to
explore the hypergeometric representation [10, 11]. Basedon the approach developed in [11], the
all-orderε-expansion of one-loop self-energy diagrams has been constructed ind = 4−2ε . More
examples of hypergeometric representation for one-loop diagrams based on the technique of [10]
are given in [13, 14]. However, still by now a systematic way to construct the analytical coefficients
of the ε-expansion for Horn-type hypergeometric functions aroundrational values of parameters
does not exist.
Definition of the hypergeometric function.
We remind the definition ofHorn-type Hypergeometric Functions:
it is a formal (Laurent) power series inr variables of the following form,

H(~J;~z) ≡ H(~γ;~σ ;~z) =
∞

∑
m1,m2,···,mr=0

(

ΠK
j=1Γ(∑r

a=1 µ jama + γ j)

ΠL
k=1Γ(∑r

b=1νkbmb + σk)

)

xm1
1 · · ·xmr

r , (1)

with µab,νab ∈ Q, γ j ,σk ∈ C and~J ≡ {~γ j ,~σ}.
The problem under consideration:
In arbitrary d-dimensional space time,d = 4− 2ε , whereε is the parameter of dimension regu-
larization [1], the set of discrete parameters~J ≡ {~γ j ,~σ} of hypergeometric function,H(~γ;~σ ;~z) is
a linear combination of rational andε-dependent coefficients:Jk = A0,k + akε , whereA0,k andak

are arbitrary rational numbers. The Laurent expansion of the hypergeometric function around the
integer valued = 4, is called “construction of the analytical coefficients ofε-expansion” of the
function:

H(~A0+~aε ;~z) = H(~A0;~z)+
∞

∑
j=1

ε jh j(~z) , (2)

where symbolically,

h j(~z) =
∂

∂~A
H(~A;~z)

∣

∣

∣

∣

~A=~A0

. (3)

The goal is to write thecoefficient functions hj in terms of known functions, suitable for numer-
ical evaluation [15], or to describe all analytical properties of h j , treating them as a new class of
functions.
Existing algorithms:
The first systematic algorithms for the construction of higher order coefficients of theε-expansion
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of multivariable hypergeometric functions around integervalues of parameters were suggested in
[16]. In Ref. [17], the special set of rational values of parameters, the so called “zero-balance case”
was analyzed. However, the partial results of [17] beyond the zero-balance case are in contradiction
with partial results of Ref. [18].
Our method:
In a series of papers [19, 20, 21] it was shown that for the hypergeometric function of one variable,

pFp−1, the analytical coefficients of theε-expansion can be constructed via anexplicit solution of
differential equationsfor coefficients functionsh j(z). Using Eq. (3) it is easy to show that the
coefficientsh j(~z) satisfy the following linear system of (partial) differential equations (PDE):

∑
~L

P~L
∂~L

∂~z
H(~A;~z) = 0⇒

∂
∂~A

[

∑
~L

P~L
∂~L

∂~z
H(~A;~z) = 0

]
∣

∣

∣

∣

∣

~A=~A0

= 0

⇒

[

∑
~L

P~L

]
∣

∣

∣

∣

∣

~A=~A0

∂~L

∂~z
h(~z) = −

[

∂
∂~A

∑
~L

P~L

]
∣

∣

∣

∣

∣

~A=~A0

∂~L

∂~z
H(~A;~z)

∣

∣

∣

∣

∣

~A=~A0

. (4)

When are non-homogeneous PDE solvable in terms of multiple polylogarithms?
We are interested in the question under which conditions thefunctionsh j(z), solutions of Eq. (4),
are expressible in terms ofmultiple polylogarithms[22, 23, 24, 25], orgeneralized iterated inte-
grals, defined as:

G(z;Rk,Rk−1, · · · ,R1) =

∫ z

0

dt
Rk(t)

I(t;Rk−1, · · · ,R1) =

∫ z

0

dtk
Rk(t)

∫ tk

0

dtk−1

Rk−1(t)
· · ·

∫ t2

0

dt1
R1(t1)

, (5)

whereRk(t) are some rational functions.Multiple polylogarithmscorrespond toRk(t) = t − ak.
When is the system of PDE with non-zero non-homogeneous partsolvable in terms of (generalized)
multiple polylogarithms?Our algorithm includes the following steps:

• Factorization: the differential operator(s) afterε-expansion are factorisable into product of
differential operators of the first order;

• Linear parametrizationto all orders inε ;

• The non-homogeneous part belongs to the class of functions of the special type (see below).

Example I
Let us consider the differential equation related to the hypergeometric functionpFp−1 [20, 21]:

p

∑
k=0

Pk(z;ε)

(

d
dz

)k

H(z;ε) = F(z;ε) , (6)

wherePk(z;ε) andF(z;ε) are rational functions or iterated integrals over a rational 1-form:

Pk(z;ε) =
Π j(z−α j −β jε)

Πr(z−Ar −Brε)
, F(z;ε) =

∫ z dt
t −σ

Π j(t −µ j −ν jε)

Πr(t −Mr −Nrε)
. (7)

We are looking for a solution of Eq. (6) of the following form:H(z;ε) = ∑∞
j=0h j(z)ε j .

Factorization.Factorization of differential operators afterε-expansion means the following:

p

∑
k=0

Pk(z;ε)

(

d
dz

)k

= ∑
r=0

Πlr≤p
k=1

[

Rk,r(z)
d
dz

+Qk,r(z)

]

ε r ,

3
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whereRk,r(z) andQk,r(z) are some rational functions.
Linear parametrization.Let us consider as illustration the following differentialequation

[

R1(z)
d
dz

+Q1(z)

][

R2(z)
d
dz

+Q2(z)

]

h(z) = F(z) . (8)

Its iterated solution is:

f (z) =
∫ z dt3

R2(t3)

[

exp−
∫ t3

0
Q2(t4)
R2(t4) dt4

]

∫ t3 dt1
R1(t1)

[

exp−
∫ t1

0
Q1(t2)
R1(t2) dt2

]

F(t1) . (9)

In accordance with Eq. (5), this iterated integral can be written as multiple polylogarithm, if there
is a new variableξ : ξ = Ψ(t), converting this expression into ratio of polynomials [20]:

∫ z Qi(t)
Ri(t)

dt = ln
Mi(ξ )

Ni(ξ )
,

dt
R2(t)

∣

∣

∣

∣

t=t(ξ )

Ni(ξ )

Mi(ξ )
= dx

Ki(x)
Li(x)

, (10)

whereMi,Ni,Ki ,Li are polynomial functions. The existence of such a parametrization we called
linear parametrization.

When does such parametrization exist?To answer to this question, the non-homogeneous part
of differential equation Eq. (6) should satisfy the system of linear PDE withFactorization and
Linear parametrizationin each order ofε :

F(z;ε) = ∑
j=0

f j(z)ε j , Πr
i=1

[

Pi(ξ )
d

dξ
+Si(ξ )

]

f j(ξ ) = Tj(ξ ) , (11)

wherePi,Si ,T are rational functions.

Multivariable generalization
Generalization of this technique for the Horn-type hypergeometric functions is straightforward:

1. Convert the system of linear PDE with polynomial coefficients into Pfaff form:

∑
J,k

P~J;k(~a;~z)
∂

∂zk
F(~a;~z) = 0 ⇒

{

dkωi(~z) = Ωk
i j (~z)ω j(~z)dzk , dr [dkωi(~z)] = 0

}

.

2. Find the values of parameters when the last system of linear PDE can be converted into
triangular form and whenFactorizationis valid.

3. Find a linear parametrization: validity of Eq.(10) for each variable.

Simplification of the procedure of Factorization.
To simplify the procedure ofFactorizationof differential operators, the following trick is very
useful. Any Horn type hypergeometric function, defined by Eq. (1), satisfies the system of linear
PDE with polynomial coefficients:

P~L(~z)
∂~L

∂~z
H(~J;~z) = 0 , (12)

4
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where ∂~L

∂~z = ∂ l1+···+lk

∂z
l1
1 ···∂z

lk
k

andP~L(~z) are polynomial. Moreover, there are linear differential operators

that change the value of each parameterJa by ±1:

Ra,~K(~z)
∂ ~K

∂~z
H(J1, · · · ,Ja−1,Ja,Ja+1, · · · ,Jr ;~z) = H(J1, · · · ,Ja−1,Ja±1,Ja+1, · · · ,Jr ;~z) . (13)

In accordance with [26], the differential operators inverse to the operators defined by Eq. (13) can
be constructed. Applying direct/inverse differential operators to the hypergeometric function the
values of parameters can be changed by an arbitrary integer numbers:

Q0(~z)H(~J+~m;~z) =
r

∑
j=0

Q~J(~z)θ~JH(~J;~z) , (14)

where~m is a set of integers andQ0(~z) andQ~J are polynomials andr is the holonomic rank of
system (12). More details are given in [27].
Example II: F3 hypergeometric function
In [28, 21] we applied our algorithm for the construction of the ε-expansion ofF1 andF3 Appell
hypergeometric functions. The results of theε expansion forF1− [28] and F3− functions [21]
around integer values of parameters are in agreement with results of [29]. Let us consider the
ε-expansion of the Appell hypergeometric functionF3 around rational values of parameters. The
ε-expansion around this set of parameters does not follow from the algorithms described in [16, 17].

Let us consider the Appell hypergeometric functionF3:

F3

(

p1

q
+a1ε ,

p2

q
+a2ε ,

r1

q
+b1ε ,

r2

q
+b2ε ,1−

p
q

+cε ;x,y

)

=
∞

∑
m=0

∞

∑
n=0

(

p1
q +a1ε

)

m

(

p2
q +a2ε

)

n

(

r1
q +b1ε

)

m

(

r2
q +b2ε

)

n
(

1− p
q +cε

)

m+n

xm

m!
yn

n!
, (15)

where{pi , r j , p,q} are integers. Applying our technology step-by-step, we findthat the system
of linear PDE for the coefficient functions is factorisable and has a triangular form only when
p j r j = 0 for j = 1,2. After that, the original system of linear PDE with polynomial coefficients is
transformed into a linear system of PDE with algebraic coefficients. To convert this system into a
class of linear PDE, the linear parametrization should exist simultaneously for the each element of
the singular locus ofF3:

{x}∪{1−x}∪{y}∪{1−y}∪{xy−x−y} , (16)

as well as for the auxiliary functionsH j , j = 1,2,3 defined as

H1(x) = (−1)
s1
q

[

xp

(x−1)s1+p

]
1
q

, H2(x) = (−1)
s2
q

[

yp

(y−1)s2+p

]
1
q

,

H3(x,y) = (−1)
s1+s2

q

[

xs2+pys1+p

(xy−x−y)s1+s2+p

]
1
q

, (17)

wheresj = p j + r j and j = 1,2. We find that the linear parametrization exists when:

5
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• The functionsH j are constant polynomial:s1 = s2 = p = 0. It corresponds to [16].

• One of three functionsH j are equal to 1:s1 = 0,s2 = −p, and(1↔ 2).

• Two of three functionsH j coincide:s1 6= 0,s2 = p = 0, and(1↔ 2).

Unfortunately, for another physically interesting set of parameters [14], we failed to rewrite the
iterated integral in terms of multiple polylogarithms. Forexample, fors1 = s2 = 0 and p 6= 0,
the statement about the existence of a linear parametrization is equivalent to the existence of three
different (rational) polynomial functions of two variables P1(x,y),P2(x,y) andP3(x,y), such that

Pq
1 +Pq

2 +Pq
3 = 1 , (18)

whereq is integer andq ≥ 2. To our knowledge, this equation has a solution only in the class
of elliptic functions. However, the finite part of theF3-function with this set of parameters is
expressible in terms of polylogarithms [30].

As result we got, that only for the two cases:

F3

(

I1 +
p1

q
+a1ε , I2 +a2ε , I3+b1ε , I4 +b2ε , I5 +

p1

q
+cε ;x,y

)

, (19)

F3

(

I1 +
p1

q
+a1ε , I2 +a2ε , I3+b1ε , I4 +b2ε , I5 +cε ;x,y

)

, (20)

where I j , p1,q are integers, the analytical coefficients of theε-expansion ofF3 hypergeometric
function are explicitly expressible in terms of multiple polylogarithms [24].

Hypergeometric Functions vs. Feynman Diagram
These two building blocks,FactorizationandLinear parametrization, are sufficient to rewrite an
iterative solution of system of linear PDE in terms of multiple polylogarithms. It is a cornerstone
of all modern multiloop analytical evaluations of master-integrals in QCD and our results are in
full agreement with available QCD calculations [31, 32, 33].

Conclusion:
The algorithm described in [19, 20, 21] has been applied to the construction of the analytical co-
efficients ofε-expansion of Horn-type hypergeometric functions of two variables [34] as well as
Mellin-Barnes integrals [35]. In particular, we analyzed the following linear system:

U0θ11ω(~z;ε) =

{

U1θ12+P1θ1+P2θ2+P0

}

ω(~z;ε) ,

T0θ22ω(~z;ε) =

{

T1θ12+R1θ1+R2θ2+R3

}

ω(~z;ε) , (21)

where~z= (z1,z2) are independent variables,θ j = zj∂zj , j = 1,2 , andθi1···ik = θii · · ·θik. The func-
tionsG0 ≡ {U0,T0,U1,T1} are polynomial of variablesz1 andz2:

G0 = ∑
i, j=0

σi, jz
i
1zj

2 , (22)

6
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all other functionE0 ≡ {Pi ,Rj} are polynomial of variablesz1,z2 andε :

E0 = ∑
i, j,k=0

γi, j;kzi
1zj

2εk , (23)

andσi, j andγi, j;k are rational. The analytical structure of the coefficientsh(r)
j (~z) defined via Laurent

expansion aroundε = 0 of the solutionω(r)(~z;ε) of this system have been analyzed

ω(r)(~z;ε) = ∑
j

h(r)
j (~z)ε j . (24)

for the physically interesting set of parameters [14]. In particular, the hypergeometric functions
considered in [16, 17] correspond to a system of linear PDE (21) with polynomial coefficients and
with singularity locus

L := {z1}∪{U0}∪{z2}∪{T0}∪{U0T0−U1T1} , (25)

where

Ui(~z;~a) = a0,i +a1,iz1 +a2,iz2 , Tj(~z;~a) = b1, jz1 +b2, jz2 +b3, jz1z2 , (26)

i, j = 1,2 andak, j ,bk,i ∈ {0,±1}. See also [36, 37].
Theε-expansion around rational values of parameters with one unbalanced rational parameter,

corresponds to a system of linear PDE with algebraic or elliptic coefficients. Imposing onlyFac-
torization conditions gives rise to iterative integrals with algebraic functions, that in general, are
not expressible in terms ofmultiple polylogarithms. Only when additionalLinear parametrization
conditions are valid, we are able to rewrite the results of the integration in terms of 2-dimensional
polylogarithms [24]. TheLinear parametrizationshould exist simultaneously for the each element
of singular locus, Eq. (25), of the differential system Eq. (21) and for algebraic functions defined as
q-roots of ratios of elements ofL: (Li/(1−Li))

1
q and/or((LiL j)/(Li +L j −LiL j))

1
q (see Eq. (17)).

It is in agreement with the one-variable case analysed in [20].
We got, see also [20], that even when the finite part of a hypergeometric function is expressible

in terms of multiple polylogarithms (existence of Liouvillian solution of a linear system of PDE
in d = 4) it does not follow that higher order terms of theε-expansion are expressible in terms of
multiple polylogarithms, too.
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