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1. Introduction

In recent years there has been tremendous progress in tlyi@oamputation of multi-loop
multi-leg color-ordered scattering amplitudes in the plart” = 4 Super Yang-Mills (SYM) theory.
At the core of this progress lies a duality which relatestsciaig amplitudes to the vacuum expec-
tation value of certain Wilson loops computed along a ligtpolygonal contour constructed out
of the momenta entering the amplitude. While this duality weginally discovered at strong cou-
pling [1], it was soon realized that a similar duality rei&ilson loops and maximally-helicity-
violating (MHV) amplitudes at weak coupling [2, 3, 4, 5, 6,8], Recently, a supersymmetric
generalization of Wilson loops was proposed which allowsxiend the duality beyond the MHV
helicity configurations [9, 10].

The Wilson loops possess a conformal symmetry, which mstsifiesself at the level of the
scattering amplitudes asdaial conformal symmetry that is independent from the usual coméb
symmetry of /" =4 SYM. It was shown that by combining the generators of thénarg and dual
conformal symmetries, one obtains the algebra of an infaliteensional Yangian symmetry [11].
Yangian symmetries are known to arise in the context of natlele systems, thus increasing the
hope that scattering amplitudes and Wilson loops in plafia= 4 SYM can be solved exactly for
any value of the coupling, reconciling in this way the stramgl weak coupling computations.

The Yangian symmetry is however broken by infrared divecgenand the (bosonic) Wilson
loops satisfy an anomalous conformal Ward identity [5]. TWerd identity allows one to express
the Wilson loop, and thus the dual MHV amplitude, at any loogeo as an iteration of the one-
loop Wilson loop, augmented by a finite function of conformmass ratios, the so-calledmainder
function While the remainder function is known to vanish for four dive-point amplitudes, it is
in general non-zero and its functional form cannot be olethiinom the conformal Ward identities
alone.

The aim of this contribution is to review the recent analyésults for scattering amplitudes
and Wilson loops at weak coupling in planat” = 4 SYM. One of the cornerstones used in the
derivation of these results are a collection of new mathealatools to deal in an efficient way
with the algebraic and combinatorial properties of mudtipblylogarithms. The outline of this
contribution is as follows: In Section 2 we review mathereititools that were used to obtain
new results for scattering amplitudes and Wilson loops @anat.4 = 4 SYM. In Section 3 we
summarize the available results for scattering amplitudegneral kinematics, before turning to
recent results in restricted kinematics for high numbetsapbs and / or external legs in Sections 4
and 5.

2. Multiple polylogarithms and symbols

It is well known that large classes of Feynman integrals @aaxXpressed in terms of multiple
polylogarithms and generalizations thereof. In this sective give a brief account on multiple
polylogarithms and discuss some of their mathematical gotgs. In particular, we review the
symbol mapa linear map that associates to every multiple polylolgarifa certain tensor which
captures the essential combinatorics underlying the ifmmat equations among polylogarithmic
functions.
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Multiple polylogarithms are a generalization of the ordinbbgarithm Inz and theclassical
polylogarithms Lj(z). They are defined through the iterated integral [12, 13]

z

G(ay,...,an2) = / G(ay,...,ant), (2.1)

o t—ag
with G(z) = 1 and wherey;, z € C. In the special case where all thgs are zero, we define, using
the obvious vector notatiog, = (a,...,a),
——
n

- 1
G(On;2) = o In"z. (2.2)

The numbem of elementsa;, counted with multiplicities, is called theeight of the multiple
polylogarithm.

Iterated integrals form shuffle algebrai.e., it is possible to express the product of two multi-
ple polylogarithms of weight; andn, as a linear combination with integer coefficients of mudipl
polylogarithms of weight; + ny,

G(ay,...,an;2)G(an,+1,- - - an+ny 2) = Z G(ag(1),- -+ (n4m) 2) (2.3)
O'EZ(nLng)
whereX(ny,nz) denotes the set of all shufflesmf+ n, elementsj.e., the subset of the symmetric
group Sy, +n, defined by

S(n,m) ={0€ Sy o D) <...<o () ando Y (m+1) <...<o Hn+mp)}. (2.4)

A way to deal with the various functional equations satisfigdmultiple polylogarithms is
given by thesymbol mapa linear map which associates to every multiple polyldbarian ele-
ment in the tensor algebra over the group of rational funstioVarious (equivalent) definitions
have been given in the literature for the symbol of a multgaéylogarithm [14, 15, 16, 17, 18, 19].
One possible way to define the symbol of a multiple polylabariis to consider its total differen-
tial [13],

n—1
A g —ait1
dG(ap_1,...,a;an) = S G(an_1,...,4,...,a;aq)dIn| —— ], 2.5
(an-1 1;8n) i; (@n-1,.-,& 1;@n) (a—a_1> (2.5)
and to define the symbol recursively by [17]

nt 8 — a1
F(Glen20-- 20i80)) = 5 (Can-s,. A i) @ <—> . (26)

i= g —a-1

As an example, the symbols of the classical polylogarithmisthe ordinary logarithms are given
by

L(Lin(2)=-(1-2)®z®...0z and . (iln”z> =7®...9Z. (2.7)
—— n! ——
(n—1) times ntimes

In addition the symbol satisfies the following identities,

L.@@b®.. =...®a®...+...0b®...,

.®(£1)®... =0. (2.8)
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While in special cases multiple polylogarithms can be exged through classical polyloga-
rithms and ordinary logarithms only, there are no such snfipimulae known in general. It is
known however that up to weight three all multiple polylatans can be expressed in terms of
classical polylogarithms and ordinary logarithms onlyeTinst time an irreducible multiple poly-
logarithms appears is thus at weight four, and there is assacg and sufficient criterion (at least
conjecturally) that allows one to determine whether a ga@mnbination of multiple polylogarithms
of weight four can be expressed in terms of classical pobitigms only. Indeed, if we define a
linear operato® acting on tensors of rank four by

o(avbecad)=(anb)A(cAd), (2.9)

with anb=a®b—b®a, then it follows from the conjecture of ref. [20] that a comdtion f of
multiple polylogarithms of weight four can be expresseatigh classical polylogarithms only if
and only if the symbol off satisfies

o[ (f)]=0. (2.10)

In the next sections we will see that the algebraic concepteduced in this section provide
an ideal language to discuss the structure of scatterindjtangs in planat/” =4 SYM.

3. A4 =4 SYM scattering amplitudesin general kinematics

In this section we review the available analytic resultsdoattering amplitudes and Wilson
loops in planary” = 4 SYM. It follows from the dual conformal Ward identities iséied by the
Wilson loops that the remainder function for the four and-faaént amplitudes vanish, and thus
these amplitudes are obtained to all loop orders by itegdkia corresponding one-loop amplitudes.
It then follows that the first non-trivial MHV remainder futimn arises for the two-loop six-point
amplitude. The six-point MHV remainder function is a fulctiof the three conformal cross ratios

2 2 2 2 2 2
_ X13%6 ) — X15%24 o — X26%35
=2 w2 =2 w2 =2 w2

X36%41 X14%55 X55X36

Ug (3.2)
with xﬁ = (X —xj)2 andp;, = X — X.1. The corresponding Wilson loop diagrams were evaluated
analytically in refs. [21, 22] by exploiting the Regge exsags of (the logarithm of) the Wilson
loop. The results were expressed in terms of a complicatetbic@mtion of several thousand mul-
tiple polylogarithms of weight four. In ref. [17] the symboiap was applied for the first time
in physics and it was shown that the symbol of the two-looppsit MHV remainder function
satisfies eq. (2.10). As a consequence, it is possible tdifmtime results of refs. [21, 22] and to
rewrite them in a form which only involves classical polyéoghms [17],

3 3 2
R (Uy, Uy, Ug) = Z <L4(xi+,xi) - %Li4(1— 1/ui)> - % (_Zuz(l— l/ui)>

i
1., mw,
+zl\] +1—2J +7_27 (3.2)

with x* = u; x* and
o Wt us— 14 VA
N 2U1UoUs3

(3.3)

4



Hexagons, Heptagons and Octogons in N =4 SYM Claude Duhr

whereA = (1—u; — Uz — U3)? — 4ugUpus. Furthermore, the functions appearing in Eq. (3.2) are
defined by

La(xt,x7) = 5;(9‘1)k|nk(x+x—)(e4_k(x+)-%z4_k(x—))4--3-|n4(x+x-), (3.4)
L (2N 8l
with
edmzénwm—p4yu4y@]md&iiwﬂﬁywﬂ&». (3.5

Finally, it was shown in ref. [17] that the square roots in £43) can be interpreted as cross ratios
in momentum twistor space, e.g.,

3456 (124

x| = _ (3456 (1245 ) (3.6)

(1456 (2345
Momentum twistors were introduced by Hodges in ref. [23] arafour-component objeck liv-
ing in a three-dimensional complex projective space. Thieyige a way to encode the kinematics
of a massless scattering, the kinematic invariants beilageck to the determinants formed out of
four twistors,

X5 ~ (i = 1)i(j - D)), 3.7)
with
zt 73 7¢ 7}
y 7?2 72 72 7?
<Ijk|> = del(Zi Zj ZkZ|) = 2:3 Z% ZE Z|3 (3.8)
zt 7§ ¢ Z¢

Up to now, the two-loop six-point remainder function is th@yocase for which a fully ana-
lytic expression is known. There was, however, progres®tardining the symbols of scattering
amplitudes at two loops and beyond. In particular, in red] (e anomalous dual superconformal
symmetry was used to determine the symbols of all two-loopiMémainder remainder functions.
It can then be checked that for more than six external legssytmbol of the MHV remainder func-
tion does no longer satisfy the condition (2.10), i.e., MH¥hainder functions for more than six
external legs cannot be expressed in terms of classicalogalsithms only. Despite the fact that
the symbols of all two-loop MHV remainder functions havem&aown for more than a year now,
no function is known that matches these symbols beyond $itg0

Furthermore, progress was made in determining the steicfuscattering amplitudes beyond
two loops. In ref. [25] the symbol of the three-loop six-poWiHV remainder function was deter-
mined by making some reasonable assumptions on the argathantan appear in the symbol of
this function, and it was shown that the most general symbtilis type consistent with collinear
and Regge limits and the collinear operator product expan&6] depends on only two free pa-
rameters. The results of ref. [25] were shortly after condidnm ref. [27] and the two free param-
eters were fixed by using the superconformal anomaly equafithe technique of ref. [25] was
recently also applied to the two-loop six-point MHV amptituin ref. [28] where its symbol was
determined. In this case it was possible to find a one-folegiratl representation of the amplitude
with the same symbol.
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While there was a lot of progress in determining the symbfédgattering amplitudes in planar
A =4 SYM, no fully analytic result at the function level is knoweyond the two-loop six-point
MHV amplitude. It is however possible to obtain analyticukés for scattering amplitudes with
more loops and legs by considering amplitudes in specifierketic limits. These results will be
reviewed in the next sections.

4, Scattering amplitudesin two-dimensional kinematics

In ref. [29] Alday and Maldacena considered scattering &oqges in planat/” = 4 SYM at
strong coupling in the limit where all external momenta tieai common two-dimensional plane.
The two-dimensional kinematics require the amplitude toethel on an even number of external
momenta, and the remainder function of the simplest netatrMHV amplitude, the six-point
remainder function, approaches a constant. It then foltbvasthe first non-trivial MHV scattering
amplitude in two dimensions is the two-loop eight-point MkvYhplitude, which was evaluated
analytically at weak coupling in ref. [30]. The result of rg§0] takes a strikingly simple form and is
expressed as a product of four logarithms. Shortly afteai shown using numerical analysis that
this simple structure is present in all two-loop MHV remanéunctions in two dimensions [31],

1 m
R,(12> =-3 Z INu;,ig INUi,ig IN Ui, IN Ui — 7—2(n— 4), (4.1)
(il,...,ig)eS

whereu;; denote dual conformal cross ratios and the sum extends lweet
S={(i1,...,ig) 1 1<ip <...<ig<nandix—ix;1 odd}. 4.2)

Forn= 8, eq. (4.1) coincides with the result of ref. [30]. Recemnlgveral conjectures have been
made regarding the structure of remainder functions indwwmeensions with more loops [32, 33],
but so far no analytic result beyond two loops is available.

5. Scattering amplitudesin the multi-Regge limit

Besides two-dimensional kinematics, there is anotheoregi phase space for which analytic
results for multi-loop multi-leg amplitudes can be obtainewhile it is known that the MHV
remainder functions vanish in the Euclidean region, whdreneariants are negative, imulti-
Regge kinematicVIRK), where the total incoming energy is much larger tham thomentum
transfers in thé-channel [34, 35, 36, 37], there is a Minkowski region, ratemo 2— 4 scattering,
where the MHV remainder functions are non zero. In the cagbeokix-point MHV remainder
function this Minkowski region can be reached by analyljcabntinuingRs(us, U2, u3) according
tou; — e 27 |u1| and then taking the limiti; — 1 while keeping the ratios

Uo 1 Us ww*

T—u - awisw) M iog = Trwasw) ®-1)

fixed [34]. In the MRK limit, the six-point remainder functiaccan be written in the form

oo (—1

Re|mrk = 271 /22 Zoa‘ In"(1—uy) [g (w,w*)+27mihf’ (vv,\/\f*)] . (5.2)
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The six-point MHV remainder function was computed at twgieo leading-logarithmic accuracy
(LLA) and next-to-leading-logarithmic accuracy (NLLA)3339] and at three loops up to next-to-
next-to-leading-logarithmic accuracy (NNLLA) [25]. Fharmore, all two-loop MHV remainder
functions in LLA are known [40].

In ref. [39, 41] an all-loop integral formula for the six-poiremainder function in MRK was
proposed,

eR6+'"5|MRK = COSTIWyp

y e dy 1\ (5.3)
+|—z (o) [ o M o) ()

wherea denotes the 't Hooft coupling and

[w|?

= =  (a) log|w[? and & = = y (a) log (5.4)

8 8 |14+ w4’

andy (a) is the cusp anomalous dimension, known to all orders [42¢ ififpact factoreg(V, N)
and the BFKL eigenvaluex(v,n) admit the perturbative expansion

w(v,n) = _a(Ev,n+aE£},1+ ﬁ(az)) and Preg(v,n) = 1+adho (v, + 0(@)  (5.5)

and are known up to NLLA [38, 41, 43].

In ref. [44] it was argued that the functionﬁ) (w,w*) and hﬁz)(vv,w*) can be expressed to
all orders in perturbation theory in terms of the singledeal harmonic polylogarithms (SVHPLS)
introduced by Brown [45]. It is then possible to write downirsehr combination of SVHPLs of
a given weight, and the coefficients of the linear combimatian be fixed by requiring its Taylor
expansion to match the series obtained by considering tegrad in eq. (5.3) as a contour integral
in the complexv plane and summing up residues. In this way, the six-point Midainder
function was determined up to ten loops in LLA and up to ningpkin NLLA [44]. Finally we
conclude by mentioning that six-point MHV and NMHV remaindienction in LLA in MRK are
related by [46]

RS KiMHv —/dWW W RERH - (5.6)
As the MHV results are known up to ten loops, itis then trivtabbtain analytic results f NMHV
up to the same loop order [44].

6. Conclusion

In this contribution we have reported on the progress madedant years in the computation
of scattering amplitudes and Wilson loops in the plamdar= 4 SYM theory. This progress was
made possible by a deeper understanding of the algebraiccanblinatorial structures underlying
multiple polylogarithms, a class of special functions tighb which large classes of Feynman inte-
grals can be expressed. In addition, this deeper undeistprel/ealed that all the analytic results
available in the literature for scattering amplitudes ianar.#” = 4 SYM are characterized by a
remarkable and unexpected simplicity.
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So far it is not clear yet how much of the simplicity of the sedhg amplitudes in/ = 4
SYM will be present in amplitudes in more realistic theotlige QCD. It was nonetheless already
shown that, by using the new mathematical tools inspired#by= 4 SYM, the two-loop helicity
amplitudes for a Higgs boson plus three gluons [47] can beittew in a much simpler form that
involves only classical polylogarithms [19, 48]. This givieope that also scattering amplitudes in
other theories have a hidden simplicity that waits yet to fieouered.
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