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1. Introduction

The associated production ot/ boson with a pair of massive bottom quarks, contributing to
both thew + b-jet andw + 2b-jet signatures, represents one of the most important backg pro-
cesses in searching for a light Higgs boson as well as stogl@roduction. The precise theoretical
knowledge of these processes provides moreover an excpheme of the current understanding
of QCD in various kinematic regimes at high-energy hadrdhidars.

The cross sections fol/ boson +b jets production have been measured at the Tevation
collider at Fermilab by both the CDF [1] and DO [2] collabaoats, and more recently at the Large
Hadron pp Collider (LHC) at CERN by the ATLAS collaboration [3]. New msurements with
better statistics are expected soon from both ATLAS and CMS.

On the theoretical side, next-to-leading order (NLO) QCDkrections toW production with
up to two jets containing at most one hedwjet are known [4] and cross sections W+ 2b-jets
were determined both in the masslésguark approximation [5, 6, 7, 8, 9] and includibgguark
mass effects [10, 11, 12, 13] at the same level of precisiommFexisting NLO QCD calculations,
the theoretical prediction for the productionWf+ 2 jets with at least onb jet has been provided
in Ref. [14] and compared to the CDF [1] and ATLAS [3] measueets in Refs. [15] and [16]
respectively. Furthermore, the NLO calculationVisbb has been interfaced with parton-shower
Monte Carlo generators using both tR@WHEG[17] and theMC@NL O[18] methods.

As shown in Ref. [12], the NLO theoretical prediction fbb production still suffers from
large renormalization and factorization scale unceiigsnin particular at the LHC. In fact, at this
order of perturbative QCD, a negg initiated channel with an additional parton in the final stat
(qg — Whbbq') opens up and, being a tree level process, introduces aystoae dependence. This
effect is particularly pronounced at the LHC, where the Nggdchannel competes with thagg/
channel due to the substantial initial state gluon dengsityly a complete NNLO calculation of
pp(pp) — Whb can be expected to reduce this spurious scale dependenagvandal theoretical
prediction consistent at this order of QCD. This clearlyresgnts an extremely challenging prob-
lem that needs to be solved in steps, and will probably regéveral new developments to extend
the reach of currents techniques.

In arecent paper [19] we have presented results for one afiimy contributions t@p(pp) —
Whbb at NNLO: the? (as) virtual corrections to theg — Whbq' channel, keeping the full bottom-
quark mass dependericéndeed, this contribution is particularly interesting fao main reasons.
First of all, thed (as) virtual corrections to thgg — Whbq' channel are a well-defined independent
piece of the overall NNLO calculation &¥bb hadroproduction. When combined with th&as)
virtual corrections tajg — Wbbg (obtained from the same calculation by crossing of initiadl a
final states), they provide a self-standing and well-defiped of the one-loop contributions to the
full NNLO Whbb cross section, namely the one-loop virtual contributiamsnf 2 — 4 processes.
Furthermore, when complemented with the correspondinfc@aections togg — Wbbg' and
qq — Whbbg, our calculation completely determine the NLO cross sestior bothwWbb + j and,
within a fully consistent four-flavor-number scheriéb + j production, i.e. for the production of
aW boson with one or twd jets plus a light jet, where the difference between the tvooc@sses is

IResults for theqg — Wbbg' channel are identical at the partonic level and in the faitwit will be understood
thatqg — Whbq refers to both channels.



TowardsWhbb + j at NLO Laura Reina

just the number ob jets tagged in the final state (the parton level processeg liee same in the
four-flavor-number scheme). Since NLO real-emission doutions nowadays can be determined
in a mostly automatized fashion with the help of existingkzaes, for instanc8HERPA [20], as
well as NLO Monte Carlo frameworks &WHEG[21, 22] andMC@NL O[23], the virtual one-loop
corrections that we have calculated [19] constitute thg amsing piece for the NLO QCD cross
section prediction of the above processes and are thereifging/ desirable. They should indeed
contribute to reduce the theoretical uncertainty from thghysical scale dependence that plague
the prediction ofV + b-jets cross sections.

Inrecent years, prompted by the increasing complexity dfirparticle one-loop calculations,
two different strategies have been primarily developedHerevaluation of one-loop corrections:
the traditional Feynman-diagram-based approach as weihiarity techniques [32, 33]. Pow-
erful packages likBl ackHat [34, 25], Cut Tool s [35], Hel ac- nl o [36], Rocket [37, 27]
andMadLoop [38] exist that provide automatization and efficient nurm@rimplementations of
unitarity methods and that have been successfully appiigde calculation of cutting-edge one-
loop processes. Recently, the automatized pacteagam[39] has been developed and applied to
the automatized computation of a wide range of NLO crossaset Moreover, several fast and
efficient private codes exist that follow the traditionapepach of Feynman diagrams and tensor-
integral reduction.

To accomplish our task, we have developed a new independemhatized approach to one-
loop calculations based on Feynman diagrams, that we haaded in a packagdyLOX, to be
eventually released for public use. We have tested our igebs against several-2 3 and 2—

4 processes for which results are available. For instanechave been able to reproduce the
td — Wddg results forW + 3 j production at NLO [26, 24], and we have cross-checked pdrts o
the one-loop corrections to the cross sectiomaf+ Whbg' with results provided by th€oSam
collaboration.

In these proceedings we will review the main charactedsticour approach with particular
focus on the general strategy used to generate and simpiifjitade-specific expressions as well
as to implement a numerically stable evaluation of one-ltemsor integrals. We will conclude
by presenting a numerical result fdg — Whbbu at NLO for a single phase-space point and by
discussing the analysis of the achieved accuracy and catiputimes.

2. General strategy

At leading order in the strong coupling, tkig — Whbbq' process, with the choice= d and

g = uwhich we consider in the following, consists of 12 tree ledieigrams. Examples of these
diagrams are depicted in fig. 1 and one-loop QCD correctiomslatained by adding virtual gluons
and fermions, yielding 308 Feynman diagrams. Ultra-vi@leY) and infrared (IR) divergences are
regularized with dimensional regularizationdr= 4 — 2¢ dimensions and we keep the full bottom-
guark mass dependence while lighter quarks are treated ssdass. We enforce transversality of
external bosons througpy - &w = 0 and pg - 5 = 0, with s\‘,\‘,/g and R‘,(,/g being the polarization
vectors and momenta of the W boson and gluon, respectivelyilethis choice is obvious for
gluons, it is justified for th&V boson only for weak couplings to massless fermions, whithas
case in the amplitude at hand.
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Figure 1. Example of LO diagrams fatg — Whbu.

In the traditional Feynman diagram based approach to tHeati@n of one-loop corrections,
a given NLO amplitude# V) is commonly decomposed as

//(1) = ZCiZCijlj//fj(l) (2.1)
I J

with color structure<C; and polarization/spin information%fj(”. I denotes tensor one-loop inte-
grals after decomposition into tensor structures of eslamomenta and contraction of all Lorentz
indices. The sum overin egn. (2.1) for a given terr@; runs over all one-loop sub-diagrams with
the same color structure.

The color- and spin-summed and/or -averaged squared anhgplis given by

r= Re( Z ///<1>///<°>*> = Re<z |n/\n> (2.2)
colorspo n

k 2 % 0 *
A=Y Z cC; Zcin///,$1>///j” (2.3)
1] colors ol

with

where.#9 is the leading-order amplitude

. Zci//zi“’), (2.4)
|

decomposed in color space on the same basis of color seaCiur

After organizing the NLO amplitude by color factor, stardl&J(3) relations are applied
to simplify the color structures and the resulting set ofocatoefficients is extracted. Sum-
ming/averaging over final/initial color indices, after t@ction with the LO color components,
yielding theGCj term in eqn. (2.3), is performed at this point. In the nexpstensor integrals are
decomposed into Lorentz invariant tensor coefficients astaadard ordering of Dirac and spinor
structures is achieved with the help of anti-commutatidatiens of Dirac matrices and the appli-
cation of the equations of motion. The amplitude is subsetijyexpanded ir(d — 4) and UV/IR
divergences are separated such that four-dimensiondltideictan be safely used without introduc-
ing the need for rational terms of either IR or UV origin [28]oreover, this approach also avoids
ambiguities in the definition of thg matrix, which we treat in naive dimensional regularization

The complete polarization information of the amplitude estained in Dirac chains and po-
larization vectors of external bosons, commonly calledddad matrix elements (SME)%/k. At
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this stage, the number of SME is of the order of several thuli$ar both 2— 4 processes. Re-
ducing the set of SME to linear combinations in a smaller &s#} is crucial since the size
of final expressions, and therefore the computational cerity| scales with the number of SME.
Algebraic relations based on four-dimensional identitékored for the specific process and SME
at hand have been described in [41, 40, 29, 30, 31] and stigltespplied in several calculations.
To automatize this procedure, we have developed a grapl laggeoach to the SME reduction
that allows for an efficient implementation and performs@dsiforce search for a small SME ba-
sis. Products of Dirac chains are translated to directeghgravhere the various structures, like
gamma matrices, projection operators, and spinors aresepted by nodes, and directed edges
describe contractions of Lorentz indices and the orderingiractures. Algebraic relations then
translate to operations on graphs, for instance shrinkfreglges, exchanging or adding of nodes,
and result in general in disconnected graphs. Since thibadetan be expressed very efficiently
within the framework of graph theory without the need for guitationally expensive algebraic
manipulations of lengthy expressions, our implementaisorapable of testing a huge number of
combinations of transformations. Typically, the origiisat of SME is reduced to a basis of sev-
eral hundred elements this way. Our variant of the SME reoiuds discussed in more detail in
Ref. [42].

On the other hand, the general strategy for the evaluatidersfor integrals coefficients is
their reduction to master integrals, usually sc&lgpoint functionsTON. In the case oN-point ten-
sors withN < 4 the well-known Passarino-Veltman (PV) algorithm [43] ¢enused, whiléN > 4
coefficients are reduced to linear combinations of founpt@nsor integrals. Due to numerical in-
stabilities in the vicinity of phase-space points wherer®sdeterminants become small, alternative
reduction techniques exist to produce reliable results.

Our tensor reduction approach combines different methalttsys for cross checks between
them and ensures numerical stability in an automatized faN-point functions withN < 4 the
following reduction schemes are used:

e PV reduction [43],

e reduction with modified Cayley determinants as introducedbnner and Dittmaier (DD)
in [44], and

e expansions around small quantities, like Gram/Cayleyrdetants and kinematic invariants
(DDx) developed by the same authors of Ref. [44].

In addition, our software is capable of producing multipfegision (MP) reductions with help
of the qd library [45], that turn out to be numerically stable alreadythe framework of the PV
reduction (MP PV). Tensor coefficients with five and six emédrlegs are evaluated following
an approach by Diakonidis et al. [46, 47] that is free of isgeGram determinants (GDF) and
therefore numerically stable.

Our implementation is inspired by [44] and performs the meidm numerically. However, the
original recursive algorithm is unrolled into an iteratipeocedure by arranging the tensor coef-
ficients in a tree-like structure, which provides fine-geaircontrol over different aspects of the
reduction. We choose the PV reduction MK 4 in the absence of numerical instabilities and the
GDF reduction folN > 4 as our standard methods. Based on these reductions, thatemtree
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is constructed for the required set of tensor coefficientsuich a way that the minimal number
of evaluations is guaranteed. For optimal reuse of interatedesults, coefficients with different
mass distributions on internal propagators are broughtdiamdard form with respect to the ex-
ternal momenta and internal masses and are treated tag@thaiready mentioned, this strategy
works well in large regions of phase space, but becomes ricaligrunstable if small Gram deter-
minants inN < 4 point coefficients are encountered. In this case, the atiatutree is extended
with subtrees for the unstable tensor functions and thgiedédencies only. These newly created
subtrees are computed with one of the alternative methdtgrdD or DDx as needed, or with
MP PV, to ensure numerical stability, while all other nodesraduced with the default procedures.
While both approaches provide numerically stable reswisiyse the former techniques mainly for
cross checks in critical phase-space regions while we gntpélatter in computations of squared
amplitudes. As subtrees are added, the reduction prograpskeack of the conditions that lead to
inconsistencies such that the newly created evaluatidrsgain be reused in future evaluations.

As a last step, the producldh(l)%l\((o)* of the NLO SME with the leading-order color ampli-
tudes are evaluated, Dirac chains properly contractedsamanations over spins and polarizations
as well as traces are performed. We translate the resultipgssions intdC code for an efficient
numerical evaluation.

It is important to note that itNLOX, after specifying the desired process and kinematics, no
user interaction is required from the point of diagram getien to the final numerical code for the
cross section evaluation at single phase-space pointsalgdbraic manipulations are performed
usingFORMwhile other components like SME and tensor reductions areldped inC++. Trans-
parent interfaces, usingyt hon, process input and output between the different stageslkwd a
for extensive intermediate checks. The final cross sectialuation is made accessible through an
automatically generated and flexilile + interface that allows, for instance, the evaluation of lEing
diagrams or color amplitudes interfered with the LO conitiiins, the extraction of divergences,
different reduction methods or a direct connection with agghspace generator.

3. Results

A big component of developing tHdLOX package deals with controlling numerical instabili-
ties. Detecting numerical instabilities at a single phsysaee point is in general a non-trivial task
without examining the surrounding phase-space domain ditiadal external information. Per-
forming the tensor reduction th= 4 — 2¢& dimensions and regulating both ultraviolet and infrared
divergences dimensionally, however, offers a direct heuodl the achieved accuracy. Firstly, the
scalar one-loop integrals in terms of which the tensorgirgecoefficients are reduced have to be
known retaining the full pole structure. For this task, we ascustom implementation based on
QCDLoop [48] for the IR poles together with a modified versionLlafopTool s [49] that allows
for multiple precision evaluations. During the reductionhigh is performed on the divergent and fi-
nite parts separately, UV/IR poles are affected by the sameerical instabilities as the finite part.
Provided the divergences can be computed for a given tenseffiaient independently in a reliable
way, a direct comparison can be used to detect a loss of fmei&)V poles of tensor coefficients

2At the cross section level, the same approach to identifyarioal instabilities has been successfully used in
[34, 50, 26].
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in the minimal subtraction scheme are mass independentandither be obtained with a single
analytic reduction or can be taken from the appendix of [4dontrast, IR divergences occur in
certain limits of vanishing kinematic invariants and havéé studied in all these cases individu-
ally. To this end, we have reduced 3- and 4-point tensor @iefifis up to rank 4 analytically in the
various IR divergent limits. Using these results a numdyicsiable library for their computation
was carefully established and thoroughly cross-checkdid thve full analytical results for a wide
range of input parameters. In our reduction, the UV and IRpof each tensor coefficient are then
checked against this library for every phase-pace point ianchse of inconsistencies, alternative
reduction methods are employed as described above.

If the stability check on the UV and IR pole parts can deteet phesence of instabilities
arising from the tensor reduction process for those partseomplitude that contain UV and IR
singularities, and in these cases it is a necessary andisuff@VE reductions in automated NLO
computations with NLOX"test, it will however miss instabés arising from the terms that do not
contain UV and IR singularities. In our Feynman-diagramseahapproach we can isolate these
cases, since they correspond to the contributions fronefirlynman diagrams. In these cases,
instabilities from tensor integral reduction still cansariand we isolate them with a very simple-
minded test that studies the oscillations of the amplitugiease in a neighborhood of each phase-
space point. If large oscillations are detected, the etialu#s switched to multiple precision.

Of course, this procedure comes with a computational doat,i$ mainly due to the multiple
reductions for pole and finite parts and the evaluation ofasdategrals, while the contribution
from the IR pole evaluation routines are negligible. Howetlganks to the efficient design of the
reduction algorithm and extensive caching, the run timescampetitive with what is reported in
the literature: computation times in the numerically statase for all tensor integrals required in
a mixed massive and massless»2 process average at around 20 ms per phase-space point on an
Intel i7 950 CPU at 3.07GHz.

Apart from instabilities in the reduction of tensor coefficis, cancellations in intermediate
expressions of the unrenormalized squared amplifudle egn. (2.3) may also induce a loss of
accuracy in some phase-space regions. Also instabiliteg arise from the non-trivial analytic
structure of the finite parts of the amplitude when the argumef the logarithmic and dilogarith-
mic terms in it are pushed to limit regions of their argumemise loss of precision is detected as
explained in Sec. 2 and, in this case, we extend the numgieaision for both the complete ten-
sor reduction as well as the evaluation of the whole coniobuo I'. This step is computationally
most expensive, as a huge number of operations has to bempedan slow multiple precision
mode both in the tensor reduction and in the evaluatioh.oFortunately, the proportion of this
type of evaluations is in general relatively small. Compéarethe naive approach where no analy-
sis of instabilities is performed on the tensor reductiorelethe necessary number of this kind of
evaluations is substantially reduced.

Table 1 gives an overview of the obtained efficiency for thal@ation at 510* random phase-
space points with reasonable cuts, requesting a maxinaliveslerror of 10°. As expected, the
evaluation time scales with the number of external pagicl&loreover, due to a larger basis of
SME, amplitudes containing weak couplings compared to xangletty production are com-
putationally more expensive. An interesting observatlumyever, is the fact that the number of
switches to multiple precision evaluations, both withia tleduction and at the amplitude squared
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Process ‘ rs rq fag t/ms tdms tg/ms tgg/ms th/ms

qq — wt 99.6% 0.4% 0 9.5 8.9 153 0 1069
gg — wit 98.9% 1.1% 0 12.0 10.1 182 0 1972
qq — Wbb | 99.7% 0.3% 0 109 104 167 0 1264

qq — Zbb 99.8% 0.1% 0.1% 17.7 144 217 3161 2290
gg — Zbb 98.3% 1.6% 0.1% 225 157 233 3314 2706
ud — ddgw | 95.4% 3.6% 1.0% 90.3 37.5 306 4358 5503
ug — bbdw | 93.1% 5.6% 1.3% 954 29.7 311 3870 5192

Table 1. Benchmarks of the numerically stabilized method appliedadnous NLO amplitudes for the
evaluation of 510* phase-space pointss, rq andrqq give the ratios of phase-space points that required
either only standard (double) or also some additional qualdfdouble-quadruple precision evaluations at
the reduction or amplitude-squared level for reliable nuca¢resultst, gives the mean evaluation time per
phase-space point whitg, t andtyy denote separate mean timings for the respective numenieaisgon.
Finally, the mean computation time of both the amplitude @mdor reduction in full quadruple precision is
given int!!. The above numbers were obtained on an Intel i7 950 CPU aGHa7

level, do not vary much between processes of comparable legityp Although evaluations in
quadruple precision take significantly more time with imsi@g number of external states, the
overall evaluation time is governed by the numerically itdinlk of phase space.

For future reference, we provide our new result for the uomeralized squared amplitude of
dg — Whbbu at NLO at a single phase-space point. The result is nornthtizéhe LO cross section
in the following way
(4m?=¢ T (1-2¢) r

= 8mas M(1+¢€)M2(1—e¢) |//((0)|2’

(3.1)

such that the final result is independent of the strong andweaplings as well as CKM matrix
elements. Furthermore, we use

my = 80.41GeVand (3.2)
m, = 4.62GeV. (3.3)

for the weak-boson and bottom-quark masses and set alhekfgarticles on-shell.

Fordg — Whbu our result withn, = 4 light andn, = 1 heavy-quark flavors at the phase-space
point of tab. 2 with renormalization scal€® = (pq + pg)? reads

[ (dg — Whbu) = —5.6666667c 2 + 39.342424s 1 + 29292493 (3.4)

4. Conclusions

We have developed a new automatized approach to the ewaluatone-loop amplitudes in
terms of Feynman diagrambll{OX) and applied it to the calculation of th&(as) virtual correc-
tions toqg — Whbbq (andgg — Wbbg). These corrections enter the NNLO calculatiorvdbb
hadroproduction as well as the NLO calculation of bathb + j andWb+ j production in a fully
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E | ol p? o3
pg | 100000000000000 0 0 100.000000000000
pg | 100.000000000000 0 0 | —100000000000000
pu | 14.4169546267975 —3.59819144566031 6.52544251406004 —12.3418069595668
P | 53.6542637065835 —16.9076522158373 —49.1575349754512) 12.4540622120327
pg | 25.2318438952597| —17.2383739318242 —15.9080092164594  8.06692341047065
pw | 106696937771359| 37.7442175933219 585401016778506] —8.17917866293656

Table 2: Phase-space point used ftg — Whbbu

consistent four-flavor-number scheme. A thorough studfefinpact of these corrections in both
previous cases as well as the application of the method aleeelin this paper to other processes
will be the subject of future publications.
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