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1. Introduction

The associated production of aW boson with a pair of massive bottom quarks, contributing to
both theW +b-jet andW +2b-jet signatures, represents one of the most important background pro-
cesses in searching for a light Higgs boson as well as single-top production. The precise theoretical
knowledge of these processes provides moreover an excellent probe of the current understanding
of QCD in various kinematic regimes at high-energy hadron colliders.

The cross sections forW boson +b jets production have been measured at the Tevatronpp
collider at Fermilab by both the CDF [1] and D0 [2] collaborations, and more recently at the Large
Hadron pp Collider (LHC) at CERN by the ATLAS collaboration [3]. New measurements with
better statistics are expected soon from both ATLAS and CMS.

On the theoretical side, next-to-leading order (NLO) QCD corrections toW production with
up to two jets containing at most one heavyb jet are known [4] and cross sections forW +2b-jets
were determined both in the masslessb-quark approximation [5, 6, 7, 8, 9] and includingb-quark
mass effects [10, 11, 12, 13] at the same level of precision. From existing NLO QCD calculations,
the theoretical prediction for the production ofW +2 jets with at least oneb jet has been provided
in Ref. [14] and compared to the CDF [1] and ATLAS [3] measurements in Refs. [15] and [16]
respectively. Furthermore, the NLO calculation ofW bb has been interfaced with parton-shower
Monte Carlo generators using both thePOWHEG [17] and theMC@NLO [18] methods.

As shown in Ref. [12], the NLO theoretical prediction forWbb production still suffers from
large renormalization and factorization scale uncertainties in particular at the LHC. In fact, at this
order of perturbative QCD, a newqg initiated channel with an additional parton in the final state
(qg →W bbq′) opens up and, being a tree level process, introduces a strong scale dependence. This
effect is particularly pronounced at the LHC, where the NLOqg channel competes with theqq′

channel due to the substantial initial state gluon density.Only a complete NNLO calculation of
pp(pp) → W bb can be expected to reduce this spurious scale dependence andgive a theoretical
prediction consistent at this order of QCD. This clearly represents an extremely challenging prob-
lem that needs to be solved in steps, and will probably require several new developments to extend
the reach of currents techniques.

In a recent paper [19] we have presented results for one of themany contributions topp(pp)→
W bb at NNLO: theO(αs) virtual corrections to theqg →Wbbq′ channel, keeping the full bottom-
quark mass dependence1. Indeed, this contribution is particularly interesting for two main reasons.
First of all, theO(αs) virtual corrections to theqg→W bbq′ channel are a well-defined independent
piece of the overall NNLO calculation ofWbb hadroproduction. When combined with theO(αs)

virtual corrections toqq′ → Wbbg (obtained from the same calculation by crossing of initial and
final states), they provide a self-standing and well-definedpart of the one-loop contributions to the
full NNLO Wbb cross section, namely the one-loop virtual contributions from 2→ 4 processes.
Furthermore, when complemented with the corresponding real corrections toqg → Wbbq′ and
qq′ →W bbg, our calculation completely determine the NLO cross sections for bothW bb+ j and,
within a fully consistent four-flavor-number scheme,W b+ j production, i.e. for the production of
aW boson with one or twob jets plus a light jet, where the difference between the two processes is

1Results for theqg → W bbq′ channel are identical at the partonic level and in the following it will be understood
thatqg →W bbq′ refers to both channels.
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just the number ofb jets tagged in the final state (the parton level processes being the same in the
four-flavor-number scheme). Since NLO real-emission contributions nowadays can be determined
in a mostly automatized fashion with the help of existing packages, for instanceSHERPA [20], as
well as NLO Monte Carlo frameworks asPOWHEG [21, 22] andMC@NLO [23], the virtual one-loop
corrections that we have calculated [19] constitute the only missing piece for the NLO QCD cross
section prediction of the above processes and are thereforehighly desirable. They should indeed
contribute to reduce the theoretical uncertainty from the unphysical scale dependence that plague
the prediction ofW +b-jets cross sections.

In recent years, prompted by the increasing complexity of multi-particle one-loop calculations,
two different strategies have been primarily developed forthe evaluation of one-loop corrections:
the traditional Feynman-diagram-based approach as well asunitarity techniques [32, 33]. Pow-
erful packages likeBlackHat [34, 25],CutTools [35], Helac-nlo [36], Rocket [37, 27]
andMadLoop [38] exist that provide automatization and efficient numerical implementations of
unitarity methods and that have been successfully applied to the calculation of cutting-edge one-
loop processes. Recently, the automatized packageGoSam [39] has been developed and applied to
the automatized computation of a wide range of NLO cross sections. Moreover, several fast and
efficient private codes exist that follow the traditional approach of Feynman diagrams and tensor-
integral reduction.

To accomplish our task, we have developed a new independent automatized approach to one-
loop calculations based on Feynman diagrams, that we have encoded in a package,NLOX, to be
eventually released for public use. We have tested our techniques against several 2→ 3 and 2→
4 processes for which results are available. For instance, we have been able to reproduce the
ud → Wddg results forW +3 j production at NLO [26, 24], and we have cross-checked parts of
the one-loop corrections to the cross section ofqg → W bbq′ with results provided by theGoSam
collaboration.

In these proceedings we will review the main characteristics of our approach with particular
focus on the general strategy used to generate and simplify amplitude-specific expressions as well
as to implement a numerically stable evaluation of one-looptensor integrals. We will conclude
by presenting a numerical result fordg → Wbbu at NLO for a single phase-space point and by
discussing the analysis of the achieved accuracy and computation times.

2. General strategy

At leading order in the strong coupling, theqg → W bbq′ process, with the choiceq = d and
q′ = u which we consider in the following, consists of 12 tree leveldiagrams. Examples of these
diagrams are depicted in fig. 1 and one-loop QCD corrections are obtained by adding virtual gluons
and fermions, yielding 308 Feynman diagrams. Ultra-violet(UV) and infrared (IR) divergences are
regularized with dimensional regularization ind = 4−2ε dimensions and we keep the full bottom-
quark mass dependence while lighter quarks are treated as massless. We enforce transversality of
external bosons throughpW · εW = 0 and pg · εg = 0, with ε µ

W/g and pµ
W/g being the polarization

vectors and momenta of the W boson and gluon, respectively. While this choice is obvious for
gluons, it is justified for theW boson only for weak couplings to massless fermions, which isthe
case in the amplitude at hand.
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Figure 1: Example of LO diagrams fordg →W bbu.

In the traditional Feynman diagram based approach to the evaluation of one-loop corrections,
a given NLO amplitudeM (1) is commonly decomposed as

M
(1) = ∑

i

Ci ∑
j

ci jI jM̂
(1)
j (2.1)

with color structuresCi and polarization/spin informationM̂ (1)
j . I j denotes tensor one-loop inte-

grals after decomposition into tensor structures of external momenta and contraction of all Lorentz
indices. The sum overj in eqn. (2.1) for a given termCi runs over all one-loop sub-diagrams with
the same color structure.

The color- and spin-summed and/or -averaged squared amplitude is given by

Γ = Re

(

∑
colors

∑
pol

M
(1)

M
(0)∗

)

= Re

(

∑
n

InΛn

)

(2.2)

with
Λn = ∑

i j
∑

colors

CiC
∗
j ∑

pol

cin M̂
(1)
n M̂

(0)∗
j (2.3)

whereM (0) is the leading-order amplitude

M
(0) =∑

i

CiM̂
(0)
i , (2.4)

decomposed in color space on the same basis of color structuresCi.
After organizing the NLO amplitude by color factor, standard SU(3) relations are applied

to simplify the color structures and the resulting set of color coefficients is extracted. Sum-
ming/averaging over final/initial color indices, after contraction with the LO color components,
yielding theCiC∗

j term in eqn. (2.3), is performed at this point. In the next step, tensor integrals are
decomposed into Lorentz invariant tensor coefficients and astandard ordering of Dirac and spinor
structures is achieved with the help of anti-commutation relations of Dirac matrices and the appli-
cation of the equations of motion. The amplitude is subsequently expanded in(d −4) and UV/IR
divergences are separated such that four-dimensional identities can be safely used without introduc-
ing the need for rational terms of either IR or UV origin [29].Moreover, this approach also avoids
ambiguities in the definition of theγ5 matrix, which we treat in naive dimensional regularization.

The complete polarization information of the amplitude is contained in Dirac chains and po-
larization vectors of external bosons, commonly called standard matrix elements (SME),̂Mk. At
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this stage, the number of SME is of the order of several thousand for both 2→ 4 processes. Re-
ducing the set of SME to linear combinations in a smaller basis {M̃k} is crucial since the size
of final expressions, and therefore the computational complexity, scales with the number of SME.
Algebraic relations based on four-dimensional identitiestailored for the specific process and SME
at hand have been described in [41, 40, 29, 30, 31] and successfully applied in several calculations.
To automatize this procedure, we have developed a graph based approach to the SME reduction
that allows for an efficient implementation and performs a brute-force search for a small SME ba-
sis. Products of Dirac chains are translated to directed graphs where the various structures, like
gamma matrices, projection operators, and spinors are represented by nodes, and directed edges
describe contractions of Lorentz indices and the ordering of structures. Algebraic relations then
translate to operations on graphs, for instance shrinking of edges, exchanging or adding of nodes,
and result in general in disconnected graphs. Since this method can be expressed very efficiently
within the framework of graph theory without the need for computationally expensive algebraic
manipulations of lengthy expressions, our implementationis capable of testing a huge number of
combinations of transformations. Typically, the originalset of SME is reduced to a basis of sev-
eral hundred elements this way. Our variant of the SME reduction is discussed in more detail in
Ref. [42].

On the other hand, the general strategy for the evaluation oftensor integrals coefficients is
their reduction to master integrals, usually scalarN-point functionsT N

0 . In the case ofN-point ten-
sors withN ≤ 4 the well-known Passarino-Veltman (PV) algorithm [43] canbe used, whileN > 4
coefficients are reduced to linear combinations of four-point tensor integrals. Due to numerical in-
stabilities in the vicinity of phase-space points where Gram determinants become small, alternative
reduction techniques exist to produce reliable results.

Our tensor reduction approach combines different methods,allows for cross checks between
them and ensures numerical stability in an automatized way.ForN-point functions withN ≤ 4 the
following reduction schemes are used:

• PV reduction [43],

• reduction with modified Cayley determinants as introduced by Denner and Dittmaier (DD)
in [44], and

• expansions around small quantities, like Gram/Cayley determinants and kinematic invariants
(DDx) developed by the same authors of Ref. [44].

In addition, our software is capable of producing multiple precision (MP) reductions with help
of theqd library [45], that turn out to be numerically stable alreadyin the framework of the PV
reduction (MP PV). Tensor coefficients with five and six external legs are evaluated following
an approach by Diakonidis et al. [46, 47] that is free of inverse Gram determinants (GDF) and
therefore numerically stable.

Our implementation is inspired by [44] and performs the reduction numerically. However, the
original recursive algorithm is unrolled into an iterativeprocedure by arranging the tensor coef-
ficients in a tree-like structure, which provides fine-grained control over different aspects of the
reduction. We choose the PV reduction forN ≤ 4 in the absence of numerical instabilities and the
GDF reduction forN > 4 as our standard methods. Based on these reductions, the evaluation tree
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is constructed for the required set of tensor coefficients insuch a way that the minimal number
of evaluations is guaranteed. For optimal reuse of intermediate results, coefficients with different
mass distributions on internal propagators are brought to astandard form with respect to the ex-
ternal momenta and internal masses and are treated together. As already mentioned, this strategy
works well in large regions of phase space, but becomes numerically unstable if small Gram deter-
minants inN ≤ 4 point coefficients are encountered. In this case, the evaluation tree is extended
with subtrees for the unstable tensor functions and their dependencies only. These newly created
subtrees are computed with one of the alternative methods, either DD or DDx as needed, or with
MP PV, to ensure numerical stability, while all other nodes are reduced with the default procedures.
While both approaches provide numerically stable results,we use the former techniques mainly for
cross checks in critical phase-space regions while we employ the latter in computations of squared
amplitudes. As subtrees are added, the reduction program keeps track of the conditions that lead to
inconsistencies such that the newly created evaluation paths can be reused in future evaluations.

As a last step, the products∧M
(1)
n

∧M
(0)∗
k of the NLO SME with the leading-order color ampli-

tudes are evaluated, Dirac chains properly contracted, andsummations over spins and polarizations
as well as traces are performed. We translate the resulting expressions intoC code for an efficient
numerical evaluation.

It is important to note that inNLOX, after specifying the desired process and kinematics, no
user interaction is required from the point of diagram generation to the final numerical code for the
cross section evaluation at single phase-space points. Allalgebraic manipulations are performed
usingFORMwhile other components like SME and tensor reductions are developed inC++. Trans-
parent interfaces, usingPython, process input and output between the different stages and allow
for extensive intermediate checks. The final cross section evaluation is made accessible through an
automatically generated and flexibleC++ interface that allows, for instance, the evaluation of single
diagrams or color amplitudes interfered with the LO contributions, the extraction of divergences,
different reduction methods or a direct connection with a phase-space generator.

3. Results

A big component of developing theNLOX package deals with controlling numerical instabili-
ties. Detecting numerical instabilities at a single phase-space point is in general a non-trivial task
without examining the surrounding phase-space domain or additional external information. Per-
forming the tensor reduction ind = 4−2ε dimensions and regulating both ultraviolet and infrared
divergences dimensionally, however, offers a direct handle on the achieved accuracy. Firstly, the
scalar one-loop integrals in terms of which the tensor-integral coefficients are reduced have to be
known retaining the full pole structure. For this task, we use a custom implementation based on
QCDLoop [48] for the IR poles together with a modified version ofLoopTools [49] that allows
for multiple precision evaluations. During the reduction which is performed on the divergent and fi-
nite parts separately, UV/IR poles are affected by the same numerical instabilities as the finite part.
Provided the divergences can be computed for a given tensor coefficient independently in a reliable
way, a direct comparison can be used to detect a loss of precision2. UV poles of tensor coefficients

2At the cross section level, the same approach to identify numerical instabilities has been successfully used in
[34, 50, 26].
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in the minimal subtraction scheme are mass independent and can either be obtained with a single
analytic reduction or can be taken from the appendix of [44].In contrast, IR divergences occur in
certain limits of vanishing kinematic invariants and have to be studied in all these cases individu-
ally. To this end, we have reduced 3- and 4-point tensor coefficients up to rank 4 analytically in the
various IR divergent limits. Using these results a numerically stable library for their computation
was carefully established and thoroughly cross-checked with the full analytical results for a wide
range of input parameters. In our reduction, the UV and IR poles of each tensor coefficient are then
checked against this library for every phase-pace point and, in case of inconsistencies, alternative
reduction methods are employed as described above.

If the stability check on the UV and IR pole parts can detect the presence of instabilities
arising from the tensor reduction process for those parts ofthe amplitude that contain UV and IR
singularities, and in these cases it is a necessary and sufficient SME reductions in automated NLO
computations with NLOX"test, it will however miss instabilities arising from the terms that do not
contain UV and IR singularities. In our Feynman-diagram-based approach we can isolate these
cases, since they correspond to the contributions from finite Feynman diagrams. In these cases,
instabilities from tensor integral reduction still can arise and we isolate them with a very simple-
minded test that studies the oscillations of the amplitude square in a neighborhood of each phase-
space point. If large oscillations are detected, the evaluation is switched to multiple precision.

Of course, this procedure comes with a computational cost, that is mainly due to the multiple
reductions for pole and finite parts and the evaluation of scalar integrals, while the contribution
from the IR pole evaluation routines are negligible. However, thanks to the efficient design of the
reduction algorithm and extensive caching, the run times are competitive with what is reported in
the literature: computation times in the numerically stable case for all tensor integrals required in
a mixed massive and massless 2→ 4 process average at around 20 ms per phase-space point on an
Intel i7 950 CPU at 3.07GHz.

Apart from instabilities in the reduction of tensor coefficients, cancellations in intermediate
expressions of the unrenormalized squared amplitudeΓ in eqn. (2.3) may also induce a loss of
accuracy in some phase-space regions. Also instabilities may arise from the non-trivial analytic
structure of the finite parts of the amplitude when the arguments of the logarithmic and dilogarith-
mic terms in it are pushed to limit regions of their arguments. The loss of precision is detected as
explained in Sec. 2 and, in this case, we extend the numericalprecision for both the complete ten-
sor reduction as well as the evaluation of the whole contribution to Γ. This step is computationally
most expensive, as a huge number of operations has to be performed in slow multiple precision
mode both in the tensor reduction and in the evaluation ofΓ. Fortunately, the proportion of this
type of evaluations is in general relatively small. Compared to the naive approach where no analy-
sis of instabilities is performed on the tensor reduction level, the necessary number of this kind of
evaluations is substantially reduced.

Table 1 gives an overview of the obtained efficiency for the evaluation at 5·104 random phase-
space points with reasonable cuts, requesting a maximal relative error of 10−5. As expected, the
evaluation time scales with the number of external particles. Moreover, due to a larger basis of
SME, amplitudes containing weak couplings compared to for examplettγ production are com-
putationally more expensive. An interesting observation,however, is the fact that the number of
switches to multiple precision evaluations, both within the reduction and at the amplitude squared
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Process rs rq rdq tm/ms ts/ms tq/ms tdq/ms t full
q /ms

qq → γtt 99.6% 0.4% 0 9.5 8.9 153 0 1069
gg → γtt 98.9% 1.1% 0 12.0 10.1 182 0 1972
qq′ →W bb 99.7% 0.3% 0 10.9 10.4 167 0 1264
qq → Zbb 99.8% 0.1% 0.1% 17.7 14.4 217 3161 2290
gg → Zbb 98.3% 1.6% 0.1% 22.5 15.7 233 3314 2706
ud → ddgW 95.4% 3.6% 1.0% 90.3 37.5 306 4358 5503
ug → bbdW 93.1% 5.6% 1.3% 95.4 29.7 311 3870 5192

Table 1: Benchmarks of the numerically stabilized method applied tovarious NLO amplitudes for the
evaluation of 5· 104 phase-space points.rs, rq andrdq give the ratios of phase-space points that required
either only standard (double) or also some additional quadruple/double-quadruple precision evaluations at
the reduction or amplitude-squared level for reliable numerical results.tm gives the mean evaluation time per
phase-space point whilets, tq andtdq denote separate mean timings for the respective numerical precision.
Finally, the mean computation time of both the amplitude andtensor reduction in full quadruple precision is
given int full

q . The above numbers were obtained on an Intel i7 950 CPU at 3.07GHz.

level, do not vary much between processes of comparable complexity. Although evaluations in
quadruple precision take significantly more time with increasing number of external states, the
overall evaluation time is governed by the numerically stable bulk of phase space.

For future reference, we provide our new result for the unrenormalized squared amplitude of
dg →W bbu at NLO at a single phase-space point. The result is normalized to the LO cross section
in the following way

Γ̂ =
(4π)2−ε

8παs

Γ(1−2ε)
Γ(1+ ε)Γ2(1− ε)

Γ
∣

∣M (0)
∣

∣

2 , (3.1)

such that the final result is independent of the strong and weak couplings as well as CKM matrix
elements. Furthermore, we use

mW = 80.41GeVand (3.2)

mb = 4.62GeV. (3.3)

for the weak-boson and bottom-quark masses and set all external particles on-shell.
Fordg →W bbu our result withnl = 4 light andnh = 1 heavy-quark flavors at the phase-space

point of tab. 2 with renormalization scaleµ2 = (pd + pg)
2 reads

Γ̂(dg →W bbu) =−5.6666667ε−2+39.342424ε−1+292.92493 (3.4)

4. Conclusions

We have developed a new automatized approach to the evaluation of one-loop amplitudes in
terms of Feynman diagrams (NLOX) and applied it to the calculation of theO(αs) virtual correc-
tions toqg → Wbbq′ (andqq′ → W bbg). These corrections enter the NNLO calculation ofWbb
hadroproduction as well as the NLO calculation of bothWbb+ j andW b+ j production in a fully
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E p1 p2 p3

pd 100.000000000000 0 0 100.000000000000
pg 100.000000000000 0 0 −100.000000000000
pu 14.4169546267975 −3.59819144566031 6.52544251406004 −12.3418069595668
pb 53.6542637065835 −16.9076522158373 −49.1575349754512 12.4540622120327
pb 25.2318438952597 −17.2383739318242 −15.9080092164594 8.06692341047065
pW 106.696937771359 37.7442175933219 58.5401016778506 −8.17917866293656

Table 2: Phase-space point used fordg →Wbbu

consistent four-flavor-number scheme. A thorough study of the impact of these corrections in both
previous cases as well as the application of the method developed in this paper to other processes
will be the subject of future publications.
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ÂăÂăarXiv:1111.2034 [hep-ph]. Â̆aÂă
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