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Until very recently all known stars with excessively low Haeuadances ([Fe/HE —4) were ob-
served to have very high C+N+O abundances (eg. [CH4]. Thus the total metallicities (Z)
were not actually very low. This suggested that low-masss stauld not form from material
having extremely low Z. However Caffau et al. (2012) have jaported abundances of one Halo
star that has extremely low C and N as well as Fe ([FefH]5.0). Furthermore they predict that
many more stars of this type should be found in the Halo. Témstrary to many theoretical pre-
dictions, it now appears that low-mass ultra Z-poor starsicdeed form. Motivated by this new
information we report on our investigation into stellar kenmn and nucleosynthesis of low-mass
stars (0.85 < M < 3.0 M) in the ultra low metallicity regime ([Fe/HE —3.0), including models
of stars with a pure Big Bang composition (i.e=20). We have calculated the entire evolution of
the Z= 0 and ultra metal-poor (UMP) models, from the ZAMS to the efithe TPAGB, includ-
ing detailed nucleosynthesis. Some of the results fronsthidy have been published previously.
We find that many of the UMP and Z 0 models experience violent evolutionary episodes not
seen at higher metallicities. We refer to these events aal‘Blashes’ and show that they can
affect the surface composition and hence the chemicalrpatte¢he yields. We provide tables of
yields for our grid of models which are available in electooformat at CDS. Although subject
to many uncertainties these are, as far as we are aware, lthgields available in this mass and
metallicity range and should be of use to chemical evolusioidies of the early Universe.
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1. Introduction

The discovery of extremely metal-poor (EMP) stars in the Galactic Halo hasatig led to
a renewed interest in the theoretical modelling of Population 11l and verynti@tallicity stars. In
particular the subset of these ancient stars that is observed to cong@irafapunts of carbon, the
C-rich EMPs (CEMPSs), which we define here as stars with [CiFe}0.7, has attracted much
stellar modelling work because their abundance patterns are difficult laiexygth standard stel-
lar evolution. These interesting objects also appear to comprise a largerfiwomf the EMPs
(~ 10— 20%; see eg. [1, 2, 3] and the SAGA database [4, 5]), suggestingritetditional (or
modified) source of C production was active in the early Universe. TEMES also display vari-
ation in a range of other elements, such as s-process species [6]. Anahtheories have been
proposed to explain the various abundance patterns seen in CEMBisigrémom pre-formation
pollution via Pop Il supernovae [7, 8] to self-pollution through peculiaietionary events [9, 10]
to binary mass transfer [11, 12].

In the past the bulk of theoretical work had pointed to stellar initial mass fure{itMFs)
peaked at very high masses (> 5Q Mn the early Universe [13, 14]. This was due to the realisation
that metal species important to cooling and fragmentation in star formation wouldtravailable.
However more recent work has been predicting ultra metal-poor (UMd@pemordial IMFs that
include low-mass stars [15, 16]. Furthermore, the fact that ancientirass halo stars having
extremely low abundances of Fe have been directly observed suggasteeipicture is not so
simple. Cooling via small amounts of C and O, which is very quickly available fRop IlI
supernovae, has now been shown to be enough to allow low-mass st@ams1d7]. The study of
[17] found a limit on the minimum amount of C needed to form low mass stars of][E/H2.9.
This fit well with the observations of the lowest metallicity EMP/UMP stars sincefalose stars
known at the time contained relatively high amounts of C. However the vepntaliscovery of
a halo star having [Fe/HF —5.0 but also [C/H]= —3.8 has cast doubt on this limit [18]. It now
appears that low-mass stars were indeed able to form from ultra-Zggsan the early Universe.
Motivated by this new discovery we explore in this paper the nature of teenidal pollution
produced by models of low- and intermediate-mass (LM<M2.0 M, and IM: M > 2.0 M)
UMP and Z= 0 stars. We focus on stars having [FeAd]-3.0. As these stars don't produce
elements heavier than Fe in situ (except possibly for s-process elemeat20§), we assume
that they have formed from gas clouds already enriched by Pop léregpae that produced the
near scaled-solar abundances of many elements seen in the ‘normaC-icn) UMP Halo stars.
In terms of producing the excessive light element (ie. CNO) pollution evidethe CEMPs we
keep an open mind as to whether they may have received their compositiongtttself-pollution
events or through binary mass-transfer (be it from wind accretion ch&ébe overflow). We
note that some of the results of this work have been published in detail @lseagipart of a series
of papers [19, 20] and yield tables are available now online from CD@l¢zpue J/A+A/490/769).

2. The Grid of Models

Our simulations were performed utilising two numerical codes — a stellar steuctute and
post-processing nucleosynthesis code.
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The stellar structure code used was the Monash version of the Monasht/tsomlo stellar
evolution code (MONSTAR, see eg. [21, 22]). Convective mixing wdkkvied with a time-
dependent (diffusive) mixing routine (similar to that described by [ZBljs was necessary due to
the violent evolutionary events (the H-flashes) that occur in models-00And UMP stars, where
the timescale for mixing becomes comparable to the evolutionary time steps, arttig¢husual
assumption of instantaneous mixing does not hold. Opacities from [24] weex for mid-range
temperatures and those of [25] for low temperatures. Convective hoesdvere always defined
by the Schwarzschild criterion — no overshoot was applied. For masshessnpirical formula
of Reimers [26] was used during the RGB (with= 0.4). For the AGB we used the formula of
Vassiliadis & Wood [27]. As described below, all the models experienogesself-pollution —
and always before or at the very beginning of the TPAGB phase. \WeHat the surfaces of the
AGB models usually have metallicities approaching that of the LMC or even Gadadefined by
Z =1—X-Y rather than Fe). Since the stellar surfaces have (some of) the ingredéstsd
to form grains, we argue that using a standard mass loss formula is veatram least as a first
approximation. We note that metallicity is also indirectly taken into account by the foas
formulae, since they depend on bulk stellar properties (such as radhiapkity, pulsation period),
which vary significantly with metallicity.

The nucleosynthesis calculations were made with the Monash Stellar Nudileesig code
(MONSOON), a post-processing code which takes input from the M@¥RSdode (eg. density,
temperature, convective velocities). It solves a network of 506 nucésations involving 74
nuclear species (see eg. [28, 29, 30]). Initial composition for the @models was taken from
the Standard Big Bang nucleosynthesis calculations of [31], whilst the indgialposition for the
UMP models was derived by mixing the ejecta from a 20 K= 0 supernova calculation (Limongi
2002, private communication) with varying amounts of Big Bang material fri®bj fo reach the
desired [Fe/H] values (for example®N ., of Big Bang material was required for [Fe/H] —4.0).

Our grid of models covers the mass range: =\MD.85,1.0,2.0,3.0 M, and the metallicity
range: [Fe/HEE —6.5,-5.45,—4.0,—3.0, plus Z= 0. Figure 1 shows the grid of models.

3. Resultsand Discussion

We have calculated the entire evolution of theed and UMP models, from the ZAMS to the
end of the TPAGB, including extensive nucleosynthesis. We also caldulaeintegrated yields
for each star. An example of one of our yield tables in shown in Table 1 afdifset is available
online from CDS (catalogue J/A+A/490/769).

We found many of the models experienced violent nuclear burning egismdeseen at higher
metallicities. We refer to these events as ‘Dual Flashes’ since they aractérdsed by nearly
simultaneous peaks in both hydrogen and helium burning. These evertd&an reported by
previous studies [32, 10] and have recently been explored with 3Dodydamical simulations
[33, 34, 35]. The two types of dual flashes we define as the i) ‘Dues Elash’ (DCF, which occurs
at the tip of the RGB), and ii) ‘Dual Shell Flash’ (DSF, which occurs duitine first few pulses
of the TPAGB phase). Some of the material processed by the Dual Flasthesiged up causing
significant surface pollution with a distinct chemical composition. This polluteternah then
contributes to the chemical patterns in the yields — especially in our lowest mas$an(0.85 and
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Figure 1: Mass-metallicity diagram showing our grid of models. EagimBol represents a single stellar
model. The diagram also shows the dominant surface palluimnnels we found in the models. Crosses
(red) represent the dual core flash self-pollution Groupltedfitriangles (blue) the dual shell flash self-
pollution Group 2 and filled circles (green) the AGB selfiptibn Group 3. The open circles (blue) around
the filled circles (green) indicate intermediate mass motiedt experienced dual shell flashes. Pollution
from TDU (and HBB) easily dominates over the pollution frohe DSF events at intermediate masses (M
> 2.0M;) so the yields of these models fall into the AGB group. The A models are included at [Fe/H]
=-8.

1.0 My). In our more massive models (2.0 and 3.0)Mve find that third dredge-up (TDU) occurs.
This repetitive pollution of the stellar envelope ends up dominating over thierdaSF pollution.
Moreover, CNO burning at the bottom of the convective envelope (Bt¢dtom Burning’, HBB) is
found to occur in these models. This cycles most of the dredged up CN@ tut*N, effectively
erasing the chemical pattern of the DSF episodes. Thus these starstedoical yield patterns
reflecting the combination of TDU+HBB rather than that of the DSF episosies green dots
surrounded by blue circles in Fig. 1). We summarise the self-pollution eggsoder the whole
grid of models by dividing them into three categories, defined by the evoariicevents/phases
that dominate the chemical signature in the yields:

e Group 1 yields are dominated by the DCF events
e Group 2 are dominated by DSF events

e Group 3 are dominated by TDU+HBB
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Table 1: Part of the yield table for the Z 0 models. Yields are in mass-fraction, integrated over thelgev
wind mass-loss history of each star. Initial compositioimgduded in the third column. The full set of yields

is available online at CDS (catalogue J/A+A/490/769).

Nuclide A Initial 0.85 M, 1.0 M, 2.0 M, 3.0 M,

H 1 7.548E-01 7.014E-01 6.597E-01 6.596E-01 5.807E-01
‘He 4 2.450E-01 2.976E-01 3.295E-01 3.367E-01 4.066E-01
L 7 3.130E-10 4.704E-10 1.263E-09 4.491E-10 4.887E-11
12c 12 0.000E+00 2.598E-05 1.844E-03 1.309E-04 4.882E-04
3¢ 13 0.000E+00 7.778E-06 3.619E-04 3.034E-05 1.152E-04
14N 14 0.000E+00 2.437E-04 3.919E-03 3.432E-03 1.166E-02
160 16 0.000E+00 5.034E-04 4.333E-03 4.885E-05 1.516E-04
9= 19 0.000E+00 1.848E-09 6.225E-06 2.879E-10 1.188E-09
2ONe 20 0.000E+00 2.485E-07 1.726E-06 2.737E-05 1.386E-04
2Na 23 0.000E+00 1.291E-09 1.131E-05 1.294E-05 9.539E-05
Mg 24 0.000E+00 3.838E-11 1.362E-06 1.865E-07 2.630E-07
Mg 25 0.000E+00 1.459E-08 3.166E-07 1.756E-06 1.562E-05
26Mg 26 0.000E+00 2.475E-08 4.065E-08 8.159E-06 6.889E-05
26p] 26 0.000E+00 3.182E-11 3.364E-10 3.085E-07 1.487E-06

In Figure 1 we show the mass and metallicity ranges in which each type of polidinimates.
We have compared our C yields with observations of CEMP stars. At thestonetallicities

([Fe/H] < —4.0) we find the yields to contair 1 to 2 dex too much carbon, in agreement with all
previous studies (eg. [9, 36, 37]). At higher metallicities ([Fe##}-3.0), where the observed data
set is much larger, all our models produce yields with [C/Fe] values consisith those observed
in the most C-rich CEMPs. However it is only the low-mass models that undeegbual Shell
Flash (which occurs at the start of the TPAGB) that can best repecithecCand N observations
simultaneously. Normal Third Dredge-Up (TDU) cannot reproduce thseivations because at
these metallicities intermediate mass modelsXM M) suffer HBB which converts the C to N
thus lowering [C/N] well below the observations, whilst if TDAereto occur in the low-mass
(M < 1Mg) models (we do not find it to occur in our models), the yields would be exgectbe
C-rich only, which is at odds with the ‘dual pollution’ of C and N generallgetved in the CEMPs
(we note that the SAGA database has a compilation of halo star abund&ijces [

We also find that the proportion of CEMP stars should continue to incréésser metallici-
ties, based on the results that some of the low mass UMP models already Hatedmurfaces by
the core helium burning phase, and that there are more C-producihgiemary episodes at these
metallicities. This is indeed observed [5], although the current sample in tHe tdlyime is small.

With regards to the Caffau star (SDSS J102915+172927, [18]), widsha mass< 0.7 M,
we would not predict that it has had any form of surface self-pollutinoesit is currently in the
MS or subgiant branch phase [18], well before a dual core flashdaaxcur.

Finally we note that, although subject to many uncertainties, th®d And UMP vyields pre-
sented here are the only yields currently available in the low and intermediateramage. They
are important for chemical evolution simulations that include the early Uaveg [38]).
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