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1. Introduction

Color confinement in Quantum Chromo-Dynamics (QCD) is a long-distance behavior whose
understanding continues to be a challenge for theoretical physics [1, 2]. Tube-like structures emerge
by analyzing the chromoelectric field between static quarks[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19]. Such tube-like structures naturally lead to linear potential and consequently to
a “phenomenological” understanding of color confinement. To explain the formation of chromo-
electric flux tubes in QCD vacuum, ’t Hooft [20] and Mandelstam [21] proposed the hypothesis
that QCD vacuum behaves like a coherent state of color magnetic monopoles, which leads to the
picture of QCD vacuum a magnetic (dual) superconductor [22]. According to this picture the ob-
served color flux tubes are naturally accounted for by the (dual) Meissner effect, in analogy with
the formation of Abrikosov tubes in the usual superconductivity [23]. Even if the ’t Hooft con-
struction does not explain the dynamical formation of colormagnetic monopoles, many lattice
calculations [24, 25, 26, 27, 28, 29, 30, 31, 32] have given numerical evidence in favor of magnetic
monopole condensation in the QCD vacuum.

On the other side, magnetic monopole condensation could be the consequence rather than the
origin of the confinement mechanism [33]. Even in this case, however, the dual superconductivity
picture provides us with a “phenomenological” frame for theanalysis of tube-like structure in the
QCD vacuum.

The outcome of previous studies [12, 13, 14, 15, 16] of the SU(2) confining vacuum was the
following: (1) presence in lattice configurations of color flux tubes made up by the chromoelec-
tric fields directed along the line joining a static quark-antiquark pair; (2) transverse size of the
chromoelectric flux tube interpreted as the London penetration length in the Meissner effect; (3)
penetration length measured both in the maximal Abelian gauge and without gauge fixing, with
compatible results, thus supporting gauge-invariance; (4) determination of the string tension as the
energy stored into the flux tube per unit length, in good agreement with the results in the literature.

The aim of the present work is to extend the analysis to the more interesting case of the SU(3)
gauge theory.

2. Color fields on the lattice

We use a connected correlator (Fig. 1)(left) to explore the field configurations produced by a
static quark-antiquark pair (N is the number of colors) [7, 8, 34, 35]:

ρW =

〈

tr
(

WLUPL†
)〉

〈tr(W)〉 − 1
N

〈tr(UP)tr(W)〉
〈tr(W)〉 . (2.1)

In the naive continuum limit [8]

ρW
a→0−→ a2g

[

〈

Fµν
〉

qq̄−
〈

Fµν
〉

0

]

, (2.2)

so that

F̂µν(x) =

√

β
2N

ρW(x) (2.3)

The configuration with plaquette parallel to the Wilson loopleads to chromoelectric field longitu-
dinal to the axis defined by the static quarks.
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Figure 1: (Left) The connected correlator (2.1) between the plaquetteUp and the Wilson loop. The subtrac-
tion appearing in the definition of correlator is not explicitly drawn. (Right) Longitudinal component of the
chromoelectric field versus the distancext atβ = 5.9 after 10 cooling steps.

2.1 The case of SU(2) gauge theory

The case of the SU(2) gauge theory was studied in [10, 12, 13, 14, 15, 16]. The main result
was that the flux tube is almost completely formed by the longitudinal chromoelectric field,El ,
which is constant along the flux and rapidly decreasing in thetransverse directionxt . In the dual
Meissner effect interpretation, the transverse shape ofEl is the dual version of the Abrikosov vortex
field distribution [10, 12, 13, 14, 15, 16] and therefore mustobey

El (xt) =
Φ
2π

µ2K0(µxt) , xt > 0 , (2.4)

whereΦ is the external flux andλ = 1/µ is the London penetration length (this is valid forλ ≫ ξ ,
with ξ the coherence length of a type-II superconductor).

In the past numerical study (lattices 164, 204 and 244, statistics 20-100) [16] approximate
scaling was found,µ/

√
σ = 4.04(18) (i.e. λ = 0.118(5) fm for

√
σ = 420 MeV). In this work

(204 lattice, statistics 1000), we findµ/
√

σ = 4.21(16) – see Ref. [36] for details.

2.2 The case of SU(3) gauge theory

The main motivation for repeating the study in SU(3) is to verify the scaling ofµ with the
string tension and to compare the resulting determination of µ/

√
σ with SU(2). This result should

provide us with important reference values, that any approach aiming at explaining confinement
should be able to accommodate.

We performed numerical simulations with the Wilson action and periodic boundary conditions,
using a the Cabibbo-Marinari algorithm [37], combined withoverrelaxation on SU(2) subgroups.
The summary ofβ values, lattice size, Wilson loop size and statistics is given in Table 1. The
lattice sizeL has been chosen such that the combinationL

√
σ & 4. The size of the Wilson loop

entering the definition of the operator given in Eq. (2.1) hasbeen fixed atL/2− 2a. In order to
reduce the autocorrelation time, measurements were taken after 10 updatings. The error analysis
was performed by the jackknife method over bins at differentblocking levels.

In order to reduce the quantum fluctuations we adopted the controlled cooling algorithm. It is
known [38] that by cooling in a smooth way equilibrium configurations, quantum fluctuations are
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β lattice Wilson loop statistics

5.90 184 7×7 5.k
6.00 204 8×8 4.5k
6.05 224 9×9 3.6k
6.10 244 10×10 2.4k

Table 1: Summary of the Monte Carlo simulations.

reduced by a few order of magnitude, while the string tensionsurvives and shows a plateau. We
shall show below that the penetration length behaves in a similar way. The details of the cooling
procedure are described in Ref. [16] for the case of SU(2). Here we adapted the procedure to the
case of SU(3), by applying successively this algorithm to various SU(2) subgroups. The control
parameterδ was fixed at the value 0.0354, as in Ref. [16].

A novelty with respect to the study of Ref. [16] is related with the construction of the lattice
operator given in Eq. (2.1). If the Wilson loop lies on the plane, say, 1-2, then the Schwinger line
can leave the plane 1-2 in the direction, say, 3; before attaching the plaquette to the Schwinger line,
the latter can be prolongated further in the direction 4, by one or two links. In this way, by varying
the length of the Schwinger line in the direction 3, one can obtain a large set of distancesxt/a
between the center of the plaquette and the center of the Wilson loop, both integer and non-integer.
On each configuration we averaged over all possible directions for the relative orientation of the
Wilson loop to the Schwinger line.

The general strategy underlying this work is the following:(1) for eachβ we generate an en-
semble of thermalized configurations and, correspondingly, ensembles of “cooled” configurations
after a number of cooling steps ranging from 5 to 16; (2) for different values of the distancext , the
longitudinal component of the chromoelectric field, averaged over each cooled ensemble of con-
figurations, is then determined by means of the operator (2.1), with the help of Eq. (2.3) (see, for
example, Fig. 1(right), which showsEl (xt) averaged over the ensemble atβ = 5.90 after 10 cooling
steps); (3) for each cooling step, data forEl (xt) are fitted with the function given in Eq. (2.4) and
the parametersµ andΦ are extracted; (4) a plateau is then searched in the plot forµ andΦ versus
the cooling step.

In Table 2 we report the results foraµ of the fit at the fourβ values considered in this work for
one selected cooling step. The table with the results for theother fit parameter,Φ, can be found in
Ref. [36]. When the fit is done on all available data forEx(xt), above a certainxt,min, theχ2/d.o.f.
is very high, thus reflecting the wiggling of data due to the inclusion of non-integer distancesxt/a.
When the fit is restricted to integer values ofxt/a, the χ2/d.o.f. turns out to be very reasonable.
Remarkably, the resulting parameters obtained with the twofitting procedures agree very well.

In Figs. 2 we show the behavior ofaµ andΦ with the cooling step atβ = 6.05. Similar figures
for the other values ofβ are given in Ref. [36]. A short plateau is visible, except forthe case ofµ
at β = 5.90. We take as “plateau” value forµ the value corresponding to the number of cooling
steps given in the second column of Table 2.

Finally, we studied the scaling of the “plateau” values ofaµ with the string tension. For this
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Figure 2: (Left) The inverse of the penetration lengthaµ at β = 6.05 versus the cooling step. Data are ob-
tained by fitting the transverse profile of the longitudinal chromoelectric field with the function (2.4); circles
correspond to fit to all available data ofEl (xt) starting from a certainxt,min, while squares correspond to fit
of El (xt) for integer values ofxt/a. (Right) The same for the amplitude of the longitudinal chromoelectric
field Φ.

β cooling step aµ χ2/d.o.f. xt,min/a data set

5.90 10 0.5577(12) 626. 6 all data
6.00 9 0.51015(92) 383. 6 all data
6.05 10 0.4730(13) 133. 7 all data
6.10 10 0.4357(20) 27. 7 all data

5.90 10 0.5557(40) 1.22 7 integerxt/a
6.00 9 0.5099(28) 2.56 9 integerxt/a
6.05 10 0.4735(39) 1.08 8 integerxt/a
6.10 10 0.4349(56) 0.25 8 integerxt/a

Table 2: Summary of the fit values foraµ .

purpose, we have expressed these values ofaµ in units of
√

σ , using the parameterization

a
√

σ(g) = fSU(3)(g
2)[1+0.2731â2(g)−0.01545â4(g)+0.01975â6(g)]/0.01364, (2.5)

â(g) =
fSU(3)(g

2)

fSU(3)(g2(β = 6))
, β =

6
g2 , 5.6≤ β ≤ 6.5 ,

fSU(3)(g
2) =

(

b0g2)−b1/2b2
0 exp

(

− 1
2b0g2

)

, b0 =
11

(4π)2 , b1 =
102
(4π)4 , (2.6)

given in Ref. [39].
Figure 3 suggests that the ratioµ/

√
σ displays a nice plateau inβ , as soon asβ is larger than

6. The scaling ofµ is a natural consequence of the fact that the penetration length is a physical
quantity related to the sizeD of the flux tube [10, 12],D ≃ 2/µ . We get as estimate for the
penetration length in SU(3) gauge theory,µ/

√
σ = 2.325(5), corresponding toµ = 0.977(2) GeV.

We observe that this value is in nice agreement with the determinations of Ref. [40], obtained by
using correlators of plaquette and Wilson loops not connected by the Schwinger line, thus leading
to the (more noisy) squared chromoelectric and chromomagnetic fields.
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Figure 3: Scaling of the inverse London penetration length with
√

σ versusβ . Data have been slightly
shifted on the horizontal axis for the sake of readability.

We note that the ratio between the penetration lengths for the SU(2) gauge theory and the
SU(3) gauge theory isµSU(2)/µSU(3) = 1.81(7). This result recalls analogous behavior seen in a
different study of SU(2) and SU(3) vacuum in a constant external chromomagnetic background
field [41]. In Ref. [41] numerical evidence that the deconfinement temperature for SU(2) and
SU(3) gauge systems in a constant Abelian chromomagnetic field decreases when the strength of
the applied field increases was given. Moreover, as discussed in Refs. [27, 41, 42], above a criti-
cal strength

√
gHc of the chromomagnetic external background field the deconfined phase extends

to very low temperatures. It was found [41] that the ratio between the critical field strengths for
SU(2) and SU(3) gauge theories is

√
gHc|SU(2)/

√
gHc|SU(3) = 2.03(17), in remarkable agreement

with the ratio between the penetration lengths for SU(2) andSU(3). As stressed in the Conclu-
sions of Ref. [41], the peculiar dependence of the deconfinement temperature on the strength of
the Abelian chromomagnetic fieldgH could be naturally explained if the vacuum behaved as a
disordered chromomagnetic condensate which confines colorcharges due both to the presence of a
mass gap and the absence of color long range order, such as in the Feynman picture for Yang-Mills
theory in (2+1) dimensions [43]. The circumstance that ratio between the SU(2) and SU(3) pene-
tration lengths agrees within errors with the above discussed ratio of the critical chromomagnetic
fields, suggests us that the Feynman picture of the Yang-Mills vacuum could be a useful guide to
understand the dynamics of color confinement.
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