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1. Introduction

Color confinement in Quantum Chromo-Dynamics (QCD) is a{distiance behavior whose
understanding continues to be a challenge for theoretipalips [1, 2]. Tube-like structures emerge
by analyzing the chromoelectric field between static quiskd, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19]. Such tube-like structures naturallg kedlinear potential and consequently to
a “phenomenological” understanding of color confinement.eXplain the formation of chromo-
electric flux tubes in QCD vacuum, 't Hooft [20] and Mandetst§?1] proposed the hypothesis
that QCD vacuum behaves like a coherent state of color miagmeinopoles, which leads to the
picture of QCD vacuum a magnetic (dual) superconductor. [A2Fording to this picture the ob-
served color flux tubes are naturally accounted for by thaljddeissner effect, in analogy with
the formation of Abrikosov tubes in the usual supercongiigti23]. Even if the 't Hooft con-
struction does not explain the dynamical formation of catmgnetic monopoles, many lattice
calculations [24, 25, 26, 27, 28, 29, 30, 31, 32] have givanerical evidence in favor of magnetic
monopole condensation in the QCD vacuum.

On the other side, magnetic monopole condensation couldebeansequence rather than the
origin of the confinement mechanism [33]. Even in this casedver, the dual superconductivity
picture provides us with a “phenomenological” frame for #malysis of tube-like structure in the
QCD vacuum.

The outcome of previous studies [12, 13, 14, 15, 16] of the2$ddnfining vacuum was the
following: (1) presence in lattice configurations of colardltubes made up by the chromoelec-
tric fields directed along the line joining a static quarkigumark pair; (2) transverse size of the
chromoelectric flux tube interpreted as the London penetrdéngth in the Meissner effect; (3)
penetration length measured both in the maximal Abeliarggand without gauge fixing, with
compatible results, thus supporting gauge-invariandedd€termination of the string tension as the
energy stored into the flux tube per unit length, in good age¥ with the results in the literature.

The aim of the present work is to extend the analysis to thesrimberesting case of the SU(3)
gauge theory.

2. Color fields on the lattice

We use a connected correlator (Fig. 1)(left) to explore thle ffonfigurations produced by a
static quark-antiquark paifN(is the number of colors) [7, 8, 34, 35]:

_ (r(WLWLT)) 1 {tr(Up)tr(W))

W) N (W) @Y
In the naive continuum limit [8]
Pw 2 a’g [<Fuv>qq_ <Fuv>0} ) (2.2)
so that
Fuv(X) = % P (X) (2.3)

The configuration with plaquette parallel to the Wilson ldeads to chromoelectric field longitu-
dinal to the axis defined by the static quarks.
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Figure 1: (Left) The connected correlator (2.1) between the plaglijtand the Wilson loop. The subtrac-
tion appearing in the definition of correlator is not exglicdrawn. (Right) Longitudinal component of the
chromoelectric field versus the distangat 3 = 5.9 after 10 cooling steps.

2.1 The case of SU(2) gauge theory

The case of the SU(2) gauge theory was studied in [10, 12,4,315, 16]. The main result
was that the flux tube is almost completely formed by the lodinal chromoelectric fieldg,,
which is constant along the flux and rapidly decreasing irtitinesverse directiow. In the dual
Meissner effect interpretation, the transverse shaj isfthe dual version of the Abrikosov vortex
field distribution [10, 12, 13, 14, 15, 16] and therefore nmalsty

(0]
E(%) = ZTUZKO(UXt) , %>0, (2.4)

where® is the external flux and = 1/u is the London penetration length (this is valid fors> &,
with & the coherence length of a type-Il superconductor).

In the past numerical study (lattices*@0* and 24, statistics 20-100) [16] approximate
scaling was foundy//o = 4.04(18) (i.e. A = 0.1185) fm for /o = 420 MeV). In this work
(20* lattice, statistics 1000), we find//d = 4.21(16) — see Ref. [36] for details.

2.2 The case of SU(3) gauge theory

The main motivation for repeating the study in SU(3) is toifyethe scaling ofu with the
string tension and to compare the resulting determinatiqn/q/c with SU(2). This result should
provide us with important reference values, that any amtr@aming at explaining confinement
should be able to accommodate.

We performed numerical simulations with the Wilson actiad periodic boundary conditions,
using a the Cabibbo-Marinari algorithm [37], combined wotrerrelaxation on SU(2) subgroups.
The summary of3 values, lattice size, Wilson loop size and statistics i®giin Table 1. The
lattice sizeL has been chosen such that the combinatigfo > 4. The size of the Wilson loop
entering the definition of the operator given in Eq. (2.1) baen fixed at. /2 — 2a. In order to
reduce the autocorrelation time, measurements were tdt@ml@ updatings. The error analysis
was performed by the jackknife method over bins at diffel@atking levels.

In order to reduce the quantum fluctuations we adopted theatted cooling algorithm. It is
known [38] that by cooling in a smooth way equilibrium configiions, quantum fluctuations are
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B | lattice | Wilson loop | statistics
590| 18 7x7 5.k
6.00| 20 8x8 4.5k
6.05| 22¢ 9x9 3.6k
6.10| 24 10x 10 2.4k

Table 1: Summary of the Monte Carlo simulations.

reduced by a few order of magnitude, while the string tensimvives and shows a plateau. We
shall show below that the penetration length behaves in #dasimay. The details of the cooling
procedure are described in Ref. [16] for the case of SU(2)e e adapted the procedure to the
case of SU(3), by applying successively this algorithm toowes SU(2) subgroups. The control
paramete® was fixed at the value 0.0354, as in Ref. [16].

A novelty with respect to the study of Ref. [16] is relatediwibe construction of the lattice
operator given in Eq. (2.1). If the Wilson loop lies on thendasay, 1-2, then the Schwinger line
can leave the plane 1-2 in the direction, say, 3; beforelitigdhe plaquette to the Schwinger line,
the latter can be prolongated further in the direction 4, g or two links. In this way, by varying
the length of the Schwinger line in the direction 3, one cataioba large set of distanceg/a
between the center of the plaquette and the center of th@Miid®p, both integer and non-integer.
On each configuration we averaged over all possible direstior the relative orientation of the
Wilson loop to the Schwinger line.

The general strategy underlying this work is the followiiit) for eachB3 we generate an en-
semble of thermalized configurations and, correspondiragigembles of “cooled” configurations
after a number of cooling steps ranging from 5 to 16; (2) fffedent values of the distance, the
longitudinal component of the chromoelectric field, aveidgver each cooled ensemble of con-
figurations, is then determined by means of the operato}, (@ith the help of Eq. (2.3) (see, for
example, Fig. 1(right), which shovig (% ) averaged over the ensembleBat 5.90 after 10 cooling
steps); (3) for each cooling step, data Ep(x ) are fitted with the function given in Eq. (2.4) and
the parameterg and® are extracted; (4) a plateau is then searched in the plqt forxd® versus
the cooling step.

In Table 2 we report the results fap of the fit at the foul3 values considered in this work for
one selected cooling step. The table with the results foother fit parametexp, can be found in
Ref. [36]. When the fit is done on all available data E(x; ), above a certaim min, the x2/d.o.f.
is very high, thus reflecting the wiggling of data due to thelision of non-integer distanceg/a.
When the fit is restricted to integer valuesxfa, the x2/d.o.f. turns out to be very reasonable.
Remarkably, the resulting parameters obtained with théfittilag procedures agree very well.

In Figs. 2 we show the behavior aft and® with the cooling step g8 = 6.05. Similar figures
for the other values g8 are given in Ref. [36]. A short plateau is visible, excepttfoe case ofu
at B = 5.90. We take as “plateau” value for the value corresponding to the number of cooling
steps given in the second column of Table 2.

Finally, we studied the scaling of the “plateau” valuesagfwith the string tension. For this
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Figure 2: (Left) The inverse of the penetration length at § = 6.05 versus the cooling step. Data are ob-
tained by fitting the transverse profile of the longitudinalamoelectric field with the function (2.4); circles
correspond to fit to all available data Ef(x) starting from a certaim min, While squares correspond to fit
of E (%) for integer values ok /a. (Right) The same for the amplitude of the longitudinal choelectric
field @.

B | cooling step au x2/d.o.f. Xt min/@ data set
5.90 10 0.5577(12) | 626. 6 all data
6.00 9 0.51015(92)] 383. 6 all data
6.05 10 0.4730(13) | 133. 7 all data
6.10 10 0.4357(20) 27. 7 all data
5.90 10 0.5557(40) | 1.22 7 integerx /a
6.00 9 0.5099(28) 2.56 9 integerx /a
6.05 10 0.4735(39) | 1.08 8 integerx /a
6.10 10 0.4349(56) | 0.25 8 integerx /a

Table 2: Summary of the fit values fau.

purpose, we have expressed these valuagiof units of /o, using the parameterization

av/o(9) = fsy()(9?)[1+0.27318%(g) — 0.01545"(g) + 0.01975°(g)]/0.01364,  (2.5)

fsuis) (9°) 6
-  B=— 56<B<65,
e (@B =6) © g
—by /2b2 11 102
feua)(6) = (bog?) ™ 0exp<_2bogz>’ 0= Gnz T e @9

given in Ref. [39].

Figure 3 suggests that the ratig /o displays a nice plateau B, as soon a$ is larger than
6. The scaling ofu is a natural consequence of the fact that the penetratiagiiés a physical
quantity related to the sizB of the flux tube [10, 12]D ~ 2/u. We get as estimate for the
penetration length in SU(3) gauge thequy,,/o = 2.3255), corresponding t = 0.977(2) GeV.
We observe that this value is in nice agreement with the aétations of Ref. [40], obtained by
using correlators of plaquette and Wilson loops not coratebly the Schwinger line, thus leading
to the (more noisy) squared chromoelectric and chromonteyginelds.
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Figure 3: Scaling of the inverse London penetration length wjtlr versus@. Data have been slightly
shifted on the horizontal axis for the sake of readability.

We note that the ratio between the penetration lengths forSi(2) gauge theory and the
SU(3) gauge theory igisy)/Usu@) = 1.81(7). This result recalls analogous behavior seen in a
different study of SU(2) and SU(3) vacuum in a constant eetechromomagnetic background
field [41]. In Ref. [41] numerical evidence that the deconfiveat temperature for SU(2) and
SU(3) gauge systems in a constant Abelian chromomagnélicdézreases when the strength of
the applied field increases was given. Moreover, as disdussBefs. [27, 41, 42], above a criti-
cal strength,/gH. of the chromomagnetic external background field the decedfphase extends
to very low temperatures. It was found [41] that the ratioNmstn the critical field strengths for
SU(2) and SU(3) gauge theories\&@H:|su)/v/9Hc|su@) = 2.03(17), in remarkable agreement
with the ratio between the penetration lengths for SU(2) 8b¢3). As stressed in the Conclu-
sions of Ref. [41], the peculiar dependence of the deconimértemperature on the strength of
the Abelian chromomagnetic fielgH could be naturally explained if the vacuum behaved as a
disordered chromomagnetic condensate which confines cadwges due both to the presence of a
mass gap and the absence of color long range order, suchheskeynman picture for Yang-Mills
theory in (2+1) dimensions [43]. The circumstance thabrhgtween the SU(2) and SU(3) pene-
tration lengths agrees within errors with the above disstisatio of the critical chromomagnetic
fields, suggests us that the Feynman picture of the YangsMiltuum could be a useful guide to
understand the dynamics of color confinement.
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