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1. Introduction

The world average of q is currently determined primarily by high-precision determinations
on the lattice. However, in the past few years there has been a renewed interest in the precision de-
termination of ¢ from non-strange hadronic 7 decays. One reason for this is the recent calculation
of the &'(a) coefficient in the perturbative contribution to the Adler function [1]. The improved
precision of the perturbative contribution emphasizes the importance of bringing other systematic
effects, previously treated with varying degrees of completeness, under control. In fact, a number
of competing analysis methods now obtain results which are not fully consistent with one another,
even when applied to the same data.

There are several theoretical issues related to this discrepancy between different determina-
tions. There is a question of which resummation scheme, contour-improved perturbation theory
(CIPT) or fixed-order perturbation theory (FOPT), is best used in the analysis. This issue has
been the focus of many recent analyses, and we have chosen to present the results of each scheme
separately. The present analysis focuses on theoretical questions related to the non-perturbative
contributions which, due to the relatively low value of the T mass, are not entirely negligible. We
present a new framework that both maintains consistency between the dimension at which the op-
erator product expansion (OPE) is truncated and the choice of sum rule weights, and provides a
quantitative description of duality violations (DVs). A complete account of the work presented
here can be found in Ref. [2].

2. Theory

The analysis of hadronic 7 decay begins with the ratio

I'[t~ — vhadrons]
[t = vee V,]

R;

2.1)

Experimentally, it is possible to decompose the non-strange contribution to this branching ratio
into vector (V) and axial-vector (A) components. Given the currents Jj, = ii(x)y"d(x) and J§ =
ii(x)y*yd(x), the two-point current correlation functions are defined by

% =i [ e e OIT {4 (0)10)
= (¢"¢" — ") 4 (*) + 4" ¢" TP () . (22)

where the superscripts (1,0) label spin. Defining the spectral functions p‘(,ﬁ(s) = (1/x)Im Hg/ji (s)

with s = ¢ the invariant squared-mass of the hadronic system, the non-strange contributions to Eq.

(2.1) can also be expressed as the sg = m% version of the weighted integral [3]

1272 [0 s\2 s S
Ry s (50) = Sew [Vua | " /0 ds (1—> [<1+2m)P\(/}IO)(S)—2<SO> 50/2(5)] . (23)

Since the J = 0 contributions are &'[(m, 4 my)?] suppressed and thus numerically negligible apart
from the 7 contribution to pf(\O) (s), the differential versions or Eq. (2.3) provide experimental

determinations of p‘(/lio) (s).
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Figure 1: FESR contour. The discontinuity Figure 2: Contour relating DVs to the spectral
across the cut is 2iImTII(s). functions between s,,; < so < oo.

Cauchy’s theorem, applied to the contour in Fig. 1, implies that, for any sg and any analytic
weight w(s), H&XO) (s) satisfies the finite energy sum rule (FESR) relation [4]

1
/’“W Wﬁw):_mnﬁbﬂm@nﬁfmy 2.4)

The LHS of Eq. (2.4) can be determined experimentally for so < m2. This then allows QCD
parameters such as o to be related to experimental data, provided the OPE representation

WWQZH%@+%—%+%—W 2.5)
can be reliably employed on the RHS.!This requires not only that sy > AZQCD, but also caution
in treating contributions in the vicinity of the positive real s-axis, where the OPE is expected to
breakdown for values of s below m2.

Defining the correction to the OPE caused by DVs as Ay 4(s) = Hg):o) (s) = TIPHE (s), we may
relate the experimental spectral functions to the OPE by

/ dsw(s pVIIO)( ) = _l'j{s_md w(s )[I—IOPE( )+Av,A(S)]

2mi

:—1,?{ dsw(s)ITOEE (s /dsw pVA s), (2.6)
s|=so

21i

where pP% = (1/7)Aya(s). The second line of Eq. (2.6) comes from an application of Cauchy’s

theorem using the contour in Fig. 2, provided p‘IZX(s), as expected, vanish fast enough as s — o
[6]. To suppress DVs, previous analyses have typically employed only doubly-pinched weights,
and often restricted their attention to sy = m2. With these precautions, all previous analyses have
taken p?% (s) to be negligible.

3. Strategy

In actual analyses, it is necessary to truncate the non-perturbative OPE series, both for practical
reasons and because the series is likely asymptotic. Through the residue theorem, a term of order

"Here we have ignored numerically negligible &' (m . d) dimension 2 contributions. We will also ignore the logarith-
mic scale dependence of the C;. For a more detailed dlscusswn see Ref. [2].
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s" in the polynomial w(s) will pick out the term in the OPE of order 1/s""!. Consistency then
requires that, if the OPE is truncated at &'(1/s"*!), the maximum degree of the polynomial weights
employed should be # [7]. OPE contributions for weights of degree n will in general depend on the
n+ 1 OPE parameters o, Cy4, C, ..., Cop+2. As the number of such linearly independent weights
is also n+ 1, one can not perform true fits using FESRs involving only a single so value while
maintaining such consistency. Our analysis therefore involves the range s, < so < m%, with $,,in
chosen such that theory gives a good description of the data above it.

We will also consider the presence of DVs in this analysis. While quite generally one would
like to understand the effect of DVs, the necessity of working with sy < m? makes their inclusion
more relevant since at lower sg values the residual DV effects are expected to be larger. Since
no systematic theory of DVs is currently available from QCD, we employ a physically motivated
model to examine their contributions. This ansatz, based on Regge theory, large-N,, and analyticity
[8], is given by [6, 9]

p‘l/)X(S) =Kva e STva Sil’l(OCVA JrSﬁV’A) . 3.1

Introducing the DV ansatz above adds four new fit parameters per channel on top of the OPE
parameters considered in earlier studies. The data needed to fit this expanded parameter set is
generated by evaluating the LHS of Eq. (2.6) for a range of 5o with a set of weights w(s).

Including the ansatz, Eq. (3.1), in this analysis allows us to perform fits with polynomial
weights w(s) that are less than doubly-pinched. In the following section, we first present the results
of fits to the unpinched weight w(s) = 1. After demonstrating the ability of our model to describe
unpinched sum rules, we then present results of fits involving multiple weights, both pinched and
unpinched. By showing, in the latter fits, our model’s ability to describe sum rules with a diverse
variety of weights, we aim to establish that our model for DVs provides an accurate description of
physics missing from the OPE representation of the correlators.

4. Fits

Two experiments have made public their T decay spectral functions, ALEPH [10, 11] and
OPAL [12]. The 2005 analysis of ALEPH is more recent and is based on more statistics, so it
would be the natural choice to apply our fitting scheme. Unfortunately, the publicly available
ALEPH data omits correlations due to unfolding. Since a reanalysis of this data by the ALEPH
collaboration is ongoing, the present analysis will focus on the 1998 OPAL data.

We first present the results of standard x? fits to Eq. (2.6) with data generated in the interval
1.5GeV? < 59 < m?2, where the lower bound is chosen based on fit quality and stability. Fig. 3
shows the results of fits to OPAL V channel data using the weight w(s) = 1, which results in values
for the strong coupling of

as(m?) =0.307 +0.019 (FOPT) ,
ot (m2) = 0.32240.026 (CIPT). 4.1

The figures demonstrate not only the expected presence of duality violations in the V channel but
also the ability of the ansatz, Eq. (3.1), to accurately describe the data. Plots of CIPT results are
nearly identical to the FOPT results shown here.
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Figure 3: The result of FOPT fits to V channel data with w(s) = 1. Shown are, on the left, the OPE(+DV)
and spectral integrals and, on the right, the the OPE(+DV) and OPAL experimental p‘(,HO) (s). Red curves
give the full OPE+DYV results, while blue curves show only the OPE contributions.

38 ‘ ‘ ‘ 1 0.05F :
g
0.04] H{
36} # } }
/ |
34) nfl i
0.02+ }}
3.2+ b 0.01} {{{
155{
‘ ‘ ‘ ‘ 0.00] sessessesmsees® f“ ‘ ‘ ‘ ‘ ]
L5 2.0 25 3.0 0.0 0.5 1.0 L5 2.0 25 3.0
5o (GeV?) s (GeV?)

Figure 4: The result of FOPT fits to V and A channel data with w(s) = 1. Shown are, on the left, axial

OPE(+DV) and spectral integrals and, on the right, the OPE(+DV) and OPAL experimental pf(‘HO) (s). Red
curves give the full OPE+DV results, while blue curves show only the OPE contributions.

A simultaneous fit to OPAL V and A channel data over the same s interval using w(s) = 1
yields values for a(m2) of 0.308(18) and 0.325(25) for FOPT and CIPT, respectively. These
values are completely consistent with the V-only results of Eq. (4.1). Fig 4 again demonstrates not
only the expected presence of DVs in the A channel but also the ability of our model to accurately
describe the data. Fits to the A channel alone, however, are less stable than the V-only case.

To examine the ability of the ansatz to describe sum rules involving pinched weights we must
refine our strategy. Fitting the parameters of Eq. (3.1) using only a single pinched weight leads
to unstable results due to the pinched weight’s suppression of DVs. To proceed, we fit to data
generated by more than one weight, always including the unpinched weight w(s) = 1 to fix the
parameters of the DV model. The strong correlations between data generated using a range of
so and different w(s), however, lead to correlation matrices with eigenvalues which are zero at
machine precision, preventing a standard 2 construction from being employed. To deal with this
problem, we fit our set of OPE and DV parameters p by minimizing the alternate fit quality

0= ; )y (Ie(f (sh) ~ 1)) (sé;ﬁ)) (C(W))i_jl (Ie(}”) (sd) — 10 (s8; ﬁ)) : 4.2)
st
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Figure 5: The results of FOPT fits to V channel data with wo(s) = 1, wy(s) = 1 — (s/s0)?, and w3(s) = (1 —
5/50)%(1 +2s/s0). The left and right plots show the OPE(+DV) and spectral integrals for wy(s) and w3(s),
respectively. Red curves give the full OPE+DV results, while blue curves show only the OPE contributions.

(w)

w
where I,y

(w)

is the weighted spectral integral, It; is the weighted theory integral which depends on
the set of parameters p, and C ) is the full covariance matrix for the weight w.

This approach allows us to study the ability of the ansatz to describe data simultaneously for a
range of pinched and unpinched weights. Q? of course differs from the standard y? function, as the
latter includes also correlations between spectral integrals involving different weights. Being forced
to work with O means we lose the statistical interpretation of the distribution around the minimum
of our fit quality present for the > function. Care must then be taken to properly incorporate the
effects of such “cross-moment” correlations on the errors and covariances of the fitted parameters.
This is done here by performing a linear fluctuation analysis as detailed in Ref. [2].

Fitting the OPAL V channel data over the range 1.5 GeV? < so < m?2 using the fit quality (4.2)
and the set of weights wo(s) = 1, wa(s) = 1 — (s/s0)?, and w3(s) = (1 —s/s0)>(1 +2s/s0) yields
values for o (m2) of 0.304(19) and 0.322(31) for FOPT and CIPT, respectively. Fig. 5 shows the
results of this analysis for the w, and w3 cases (the corresponding wy results are indistinguishable
from those shown in Fig. 3). We find that our DV ansatz is able to provide an accurate simulta-
neous description of the experimental spectral integrals for all of the weights employed, whether
unpinched, singly-pinched, or doubly-pinched. Though not shown here explicitly, we find that an
accurate simultaneous description is not possible using OPE contributions alone. The results for
o, from the combined wg, wy, and ws fit are clearly in excellent agreement with those from the
single-weight, unpinched wy fit shown in (4.1). While we have chosen to present the result of a
fit using the specific basis of weights described above, a variety of different weight sets have been
examined with excellent consistency throughout.

5. Conclusions

We have presented an improved strategy for FESR analyses of hadronic T decay data. First,
the analysis enforces consistency between the degree of the weight employed and the dimension
at which the OPE is truncated. Second, the analysis allows for a quantitative investigation of the
impact of residual duality violations not present in previous analyses. This is accomplished by
employing a model, (3.1), for the duality violation contributions to the vector and axial-vector
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channel spectral functions. By examining the stability of fits relative to both the range of energies
used in the sum rules and the choice of weights, we conclude that our model is able to accurately
describe the physics of duality violations in the vector and axial-vector channels.

Our most stable results come from fits to only the vector channel data. Regardless, all of the
results obtained from combined vector and axial-vector fits are consistent with the vector channel
only results. We take as our main result the standard y2, w(s) = 1, vector channel output of Eq.
(4.1), ay(m2) = 0.307(19) for FOPT and o (m?2) = 0.322(26) for CIPT. For reference, the values
of a(m2) obtained by OPAL from the same data are 0.324(14) and 0.348(21) for FOPT and CIPT,
respectively. Our results are seen to have central values shifted downward by slightly more than 1
signa, somewhat larger errors, and a somewhat smaller FOPT-CIPT difference. The larger errors
are not unexpected, given the necessity of fitting four extra parameters per channel.

Running our values up to the Z mass yields

o (M2) = 0.1169 4 0.0025 (MS, ny =5, FOPT),
o (M3) = 0.1187 40.0032 (MS, ny =5, CIPT) . (5.1)

The slight asymmetry caused by scaling the errors has been averaged over.
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