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We present recent progress in our calculation of BK with improved staggered fermions using
chiral extrapolations based on SU(3) staggered chiral perturbation theory. We have accumulated
significantly higher statistics on the coarse, fine, and ultrafine MILC asqtad lattices. This leads
to a reduction in statistical error and an improved continuum extrapolation. Our updated result
is B̂K = BK(RGI) = 0.737±0.003(stat)±0.046(sys). This is consistent with the result obtained
using chiral extrapolations based on SU(2) staggered chiral perturbation theory, although the total
error is somewhat larger with the SU(3) analysis.
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1. Introduction

Calculations of the kaon mixing parameter BK have reached a mature stage with several re-
sults available having all errors controlled and small. Our calculation uses improved staggered
fermions—HYP-smeared valence on asqtad sea—and at present achieves total error of∼ 5% [1, 2].
Our main analysis uses chiral fitting functions derived from SU(2) staggered chiral perturbation
theory (SChPT), and is updated in Ref. [2]. As a check on this result, we also carry out an anal-
ysis using fit forms from SU(3) SChPT, and in the present report we update the results from this
analysis. In particular, we focus on the progress since our publication [1] and last year’s lattice
proceedings [3].

In Table 1 we show the current set of ensembles on which we have done the SU(3) analysis,
together with the resulting values for BK . In the last year, we have accumulated higher statistics
on the C2, C5, F1, F2, and U1 ensembles. The most important improvements are those for the F1
and U1 ensembles, since these are used for continuum extrapolation. As described in Ref. [2], the
9-fold increase in statistics on the F1 ensemble significantly impacts the continuum extrapolation
in the SU(2) analysis. It forces us to fit to only the three smallest lattice spacings, excluding the
coarse ensembles. Our main aim here is to show how the increase in statistics impacts the SU(3)
analysis.

a (fm) am`/ams geometry ID ens × meas BK (N-BB1) BK (N-BB2)
0.12 0.03/0.05 203×64 C1 564×1 0.555(12) 0.564(17)
0.12 0.02/0.05 203×64 C2∗ 486×9 0.538(12) 0.535(17)
0.12 0.01/0.05 203×64 C3 671×9 0.562(6) 0.592(14)
0.12 0.01/0.05 283×64 C3-2 275×8 0.575(6) 0.595(13)
0.12 0.007/0.05 203×64 C4 651×10 0.564(5) 0.598(13)
0.12 0.005/0.05 243×64 C5∗ 509×9 0.576(5) 0.598(12)
0.09 0.0062/0.031 283×96 F1∗ 995×9 0.536(3) 0.561(10)
0.09 0.0031/0.031 403×96 F2∗ 850×1 0.539(7) 0.544(13)
0.06 0.0036/0.018 483×144 S1 744×2 0.535(6) 0.560(11)
0.06 0.0025/0.018 563×144 S2# 198×9 -NA- -NA-
0.045 0.0028/0.014 643×192 U1∗ 705×1 0.543(4) 0.554(8)

Table 1: MILC asqtad ensembles used in the calculation. Ensembles marked with a ∗ have improved
statistics compared to last year, while those marked with a # are new. Results for BK(µ = 2 GeV) using both
N-BB1 and N-BB2 fits are given. See the text for discussion of these fits.

2. Fitting and Results

In our numerical study, our lattice kaon is composed of valence (anti-)quarks with masses mx

and my. On each MILC asqtad ensemble, we use 10 valence masses:

amx, amy = ams×n/10 with n = 1,2,3, . . . ,10 (2.1)
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where ams is the nominal strange sea quark mass of the given lattice ensemble. Hence, we have 55
combinations of the lattice kaon: 10 degenerate (mx = my) and 45 non-degenerate (mx 6= my).

An important difference between the SU(2) and SU(3) analyses is the number of the mass
combinations that are included. In the SU(2) analysis, we use only those in which the valence d
quark is much lighter than the valence s quark. Specifically, we use the lightest 4 or 5 values of
mx and the heaviest 3 values of my. In the SU(3) analysis, by contrast, we use all 55 combinations.
While this makes better use of our data, it does so at considerable cost. First, quite a few of our
mass combinations are in the regime where next-to-leading order (NLO) SU(3) ChPT is beginning
to break down. Second, the fit forms in SU(3) SChPT contain very many fit parameters [4] and
have to be simplified by hand in order to be practical. In the end, as explained in Ref. [1], we came
up with two different schemes for fitting, both using Bayesian constraints on parameters which
arise due to discretization errors, but doing so in somewhat different ways. We focus here on the
results for these two schemes, which we call “N-BB1” and “N-BB2”. Both schemes are based on
NLO SChPT with the addition of a single analytic next-to-next-to-leading order term.

In the N-BB1 scheme, we fit the data in two stages. First, we fit the 10 degenerate mass combi-
nations to the functional form of Eq. (62) of Ref. [1] using the Bayesian method. We constrain the
coefficient of the term arising from discretization and matching errors assuming that discretization
errors dominate, so that c4 ∝ (aΛQCD)2. Second, we fit all 55 combinations to the fitting functional
form of Eq. (63) of Ref. [1] using the Bayesian method. In this second stage, we make similar as-
sumptions concerning the size of terms arising from discretization errors, and also input the results
from the degenerate fit (for a subset of the total set of parameters) as Bayesian constraints.

The N-BB2 scheme differs only in that we assume that matching errors dominate in the low-
energy coefficients arising from discretization and matching errors, so that, for example, c4 ∝ α2

s ,
(where we evaluate αs at the scale of µ = 1/a in the MS scheme).

In Fig. 1, we show how the 9-fold increase in statistics impacts the N-BB1 fits on the F1
ensemble. As expected, errors have been reduced by a factor of ∼ 3, and this holds also for the
value for BK that results after extrapolation to physical valence-quark masses and removal of taste-
breaking lattice artifacts. This final value (shown as a blue octagon in the figure) has shifted up by
about 0.2σ .

The changes in the N-BB2 fits (not shown) are different: the final value is shifted up by 1.8σ

while the error is reduced only by a factor of ∼ 1.2.

3. Continuum extrapolation

In Fig 2, we present our updated results for the continuum extrapolation using both N-BB1
and N-BB2 fits. In the case of the N-BB1 fit, it is not possible to obtain a good fit to all four values
of a using a simple fitting functional form, e.g. c1 +c2a2 +c3a4, with physically reasonable values
for the coefficients. This is the same issue that arises in the SU(2) fits, and is discussed in that case
in more detail in the companion proceedings [2]. We proceed by fitting only to the smallest three
values of a, using either constant or linear fits.

For the N-BB2 fit we do obtain reasonable fits to all four values of a, but, in order to compare
with the N-BB1 fits, we also use only the smallest three values of a.
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(a) Lattice 2010 (b) Lattice 2011

Figure 1: BK(1/a) versus XP (squared mass of pion composed of valence x and x̄) for the F1 ensemble,
using N-BB1 fits. The left panel uses 1 measurement/configuration, while the right panel uses 9 measure-
ments/configuration. Red diamonds show the data, while the blue octagon shows the result obtained after
extrapolation to physical quark masses with all taste-breaking lattice artifacts removed.

(a) N-BB1 (b) N-BB2

Figure 2: BK(NDR,µ = 2 GeV) as a function of a2 (in fm ×100) for the N-BB1 fit (left) and the N-BB2 fit
(right), showing constant and linear extrapolations to the smallest three values of a.

In Table 2, we summarize the results of these continuum extrapolations. We use the constant
fit to the N-BB1 data for our central value and the difference between this and the result from
the corresponding fit to the N-BB2 data as an estimate of the fitting systematic. Note that the
difference between N-BB1 and N-BB2 fits is much larger than the difference between constant and
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fit type constant fit linear fit
N-BB1 0.5383(23) 0.5344(53)
N-BB2 0.5573(53) 0.5526(106)

Table 2: Results for BK(µ = 2 GeV to data from N-BB1 and N-BB2 chiral fits using both constant and
linear continuum extrapolations (in a2).

linear extrapolations. This reflects the uncertainty in SU(3) fitting caused by the large number of
parameters related to discretization and matching errors.

In Fig. 3 we compare the results from the N-BB1 fits to those using our preferred SU(2) fitting
approach. There is reasonable consistency point by point.

(a) SU(3) analysis (b) SU(2) analysis

Figure 3: BK(NDR,µ = 2 GeV) as a function of a2 (in fm ×100) from the SU(3) analysis (N-BB1 fit) in
the left panel and from the SU(2) analysis in the right panel. Constant fits to the three smallest values of
a = 0 are shown.

4. Error Budget and Conclusions

In Table 3, we list various sources of error in the SU(3)-based calculation of BK . Many of the
smaller errors are unchanged from Ref. [1], and we refer to that paper for an explanation of how
they are estimated.

The major changes to the errors are as follows. The statistical error has been reduced from
1.4% in Ref. [1] to 0.4%, due to the use of more measurements. The “matching” error—due to
our use of one-loop matching between lattice and continuum operators—has been reduced from
5.5% in Ref. [1] to 4.4%. This is simply due to the addition of the smallest lattice spacing, for our
estimate of the percentage error is αs(µ = 1/amin)2. The discretization error has also been reduced
(from 2.2%), since our smallest value of a is closer to the continuum. Finally, the “fitting (2)”
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cause error (%) memo status
statistics 0.43 N-BB1 fit update
matching factor 4.4 ∆B(2)

K (U1) update
discretization 0.95 diff. of const and linear extrap update
fitting (1) 0.36 diff. of N-BB1 and N-B1 (C3) [1]
fitting (2) 3.5 diff. of N-BB1 and N-BB2 at a = 0 update
aml extrap 1.0 diff. of (C3) and linear extrap [1]
ams extrap 0.5 constant vs. linear extrap [1]
finite volume 2.3 diff. of 203 (C3) and 283 (C3-2) [1]
r1 0.12 error propagation from r1 [1]

Table 3: Error budget for BK obtained using SU(3) SChPT fitting.

error—that due to the uncertainty in the size of SChPT coefficients introduced by discretization
and matching errors—has changed from 5.3% to 3.5%. Nevertheless, this error remains large, and
along with the matching error, dominates the total error. This large fitting systematic is a reflection
of the difficulties in using SU(3) SChPT and is reason why we think that the SU(2) analysis is more
reliable.

Our present value from the SU(3) analysis is

BK(NDR,µ = 2 GeV) = 0.5383±0.0023±0.0337 , SU(3) fit
B̂K = BK(RGI) = 0.7371±0.0032±0.0461 , SU(3) fit

(4.1)

where the first error is statistical and the second systematic. The total error is 6.3%. This should be
compared to our updated SU(2) result [2]

B̂K = BK(RGI) = 0.725±0.004(stat)±0.038(sys) SU(2) fit . (4.2)

We see that, although the SU(3) result has a smaller statistical error, it has a significantly larger
systematic error. The most important observation, however, is that the two results are consistent.
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