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We investigate how the topological charge density in lattice QCD simulations is affected by vio-
lations of chiral symmetry in different fermion actions. To this end we compare lattice configu-
rations generated with a number of different actions including first configurations generated with
exact overlap quarks. We visualize the topological profiles after mild smearing. In the topolog-
ical charge correlator we measure the size of the positive core, which is known to vanish in the
continuum limit. To leading order we find the core size to scale linearly with the lattice spacing
with the same coefficient for all actions, even including quenched simulations. In the subleading
term the different actions vary over a range of about 10%. Our findings suggest that non-chiral
lattice actions at current lattice spacings do not differ much for this specific observable related to
topology, both among themselves and compared to overlap fermions.
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1. Introduction

Lattice QCD has seen progress towards smaller lattice spacings and realistic pion masses.
Chiral symmetry – a key feature of the continuum theory – cannot be realized in a straight forward
way for doubler free formulations on a lattice. Most of the fermion actions, therefore, have to
break chiral symmetry explicitly or they keep only an approximation of it. Since chiral symmetry
is an important property of QCD, it is not clear a priori, how harmful these approximations are for
physics results. The only known way to treat chiral symmetry properly is to use Ginsparg-Wilson
fermions, usually realized as overlap fermions, which are numerically very expensive. To avoid
uncontrolled effects in state-of-the-art lattice simulations we need benchmark comparisons with
results from dynamical overlap fermions especially for observables which are sensitive to chiral
symmetry.

To this end we analyze the topological charge density. Topology is intimately connected to
chiral symmetry, both through the chiral anomaly giving mass to the η ′ meson and through the
index theorems linking fermionic zero modes to the topological charge. We, therefore, believe that
the topological charge density, although a purely gluonic quantity, is well suited to test the effects
due to violation of chiral symmetry for different fermion actions [1].

2. The topological charge density and its correlator

The topological charge and its (Euclidean) density are defined as

Q =
∫

q(x)d4x, q(x) =
1

32π2 εµνρσ Tr
(

Fµν(x)Fρσ (x)
)
. (2.1)

In this work we have focused on the 2-point function of the topological charge density 〈q(x)q(y)〉
which integrates to the topological susceptibility

χtop =
〈Q2〉

V
=
∫
〈q(0)q(x)〉d4x. (2.2)

The topological charge, as a genuine continuum quantity, cannot be defined without ambigu-
ities on a lattice. We use a discretized topological charge density with an improved lattice field
strength tensor, which combines 1×1, 2×2 and 3×3 loops [2].

In order to remove unwanted short range fluctuations, we need filtering methods to extract
the relevant long range degrees of freedom. The structures which emerge after these filtering pro-
cedures are not unique. They strongly depend on parameters like numbers of iterations or mode
number. However, in the weak filtering regime one finds that different methods reveal similar local
structures if one carefully matches their parameters [3, 4, 5]. In this work we use the improved
stout smearing algorithm [6]. While other smearing methods, as well as cooling, destroy topologi-
cal structures in the long run, this algorithm is designed to preserve instanton-like objects in a wide
range of their size parameter. Moreover, 5 steps of this improved stout smearing were found to
produce a topological charge density very similar to the fermionic one, qferm [7].
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fermion (gauge) action Nf a[ fm] V[a4] mπ [MeV] Nconf Ref.
twisted mass (Sym.) 2 0.10−0.063 24348 − 32364 ≈ 500 20 [8]
twisted mass (Sym.) 2 0.10−0.051 20348 − 32364 ≈ 280 20 [8]

np. imp. clover (Plaq.) 2 0.11−0.07 24348 ≈ 500 20 [9]
np. imp. clover (Plaq.) 2 0.10−0.07 32364 ≈ 250 20 [9]
asqtad staggered (LW) 2+1 0.15−0.09 16348 − 28396 ≈ 500 5 [10]
top. fixed overlap (Iw.) 2 0.12 16332 ≈ 500 20 [11]

chirally imp. (LW) 2 0.15 16332 ≈ 500 20 [12]
overlap (LW) 2+1 0.13−0.12 12324 ≈ 500 15 [13]

Table 1: Configurations used in this work. (Abbreviations: Sym. = Symanzik , Plaq. = Plaquette, LW =
Lüscher-Weisz, Iw. = Iwasaki)

dyn. overlap top. fixed overlap quenched Iwasaki

asqtad clover quenched plaquette

Figure 1: Slices of the topological charge density for dynamical overlap (mπ = 600MeV), asqtad staggered,
dynamical overlap with topology fixing term (mπ ≈ 500MeV each) and nonperturbative improved clover
(quite heavy mπ ≈ 1GeV) fermions, all with the same lattice spacing a= 0.12fm. The quenched counterparts
of the latter two configurations are also depicted (Iwasaki↔ top.fixed overlap and plaquette↔ clover). The
lattice volume is 123 in all cases corresponding to a size of approximately (1.5fm)3. The color scale is equal
in all plots: Blue represents negative and red positive topological charge density.

3. Lattice configurations

We compare full dynamical N f = 2 and N f = 2+1 flavor configurations from different fermion
formulations. They are available through the International Lattice Data Grid [14] in a wide range
of lattice spacings, lattice volumes and pion masses, see Tab. 1.

Additionally, we have generated three Nf = 2 + 1 dynamical overlap ensembles with pion
masses, which were measured to be around 550MeV, at lattice spacings of around 0.12fm and a
lattice volume of 12324. For more details on the dynamical overlap configurations and the algo-
rithmic improvements, which made these simulations possible, we refer to Refs. [1, 13].

4. Results

In Fig. 1 we show the topological structure of one sample configuration for different fermion
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⇒ ⇒

a=0.1fm a=0.079fm a=0.063fm

Figure 2: 3d slice of the topological charge density for twisted mass fermions at fixed spatial volume
V = (1.9fm)3 after 5 steps of improved stout smearing. The color scale is equal in all three slices. We see
an increasing laminar structure [16] for finer lattices.

actions, after 5 steps of improved stout smearing. They all have the same lattice spacing of a =

0.12fm and the same physical volume V = (1.44fm)3. While this is only a small fraction of the
total four-dimensional volume, one can see already some of the main properties. Dynamical lattice
simulations tend to give larger fluctuations of the topological charge density than their quenched
counterparts. This was already pointed out in, e.g., Ref. [15]. The magnitude of these fluctuations
and the individual profiles strongly depend on the action.

A direct comparison of the profiles from different actions is only possible if the lattice spacings
are equal because the densities q(x) scale with a−4. The strong dependence on the lattice spacing
is visualized in Fig. 2. Two main effects towards the continuum limit are clearly visible. First, the
structure becomes more and more fine grained and second the strength of the density in physical
units increases. To quantify this observation we measure the two-point correlation function of the
topological charge density after 5 steps of improved stout smearing.

In Fig. 3 we show this two-point function for a dynamical overlap ensemble. The correlator has
the same characteristic behavior for all fermion actions. At small distance the correlator develops a
positive core of radius rc, for large distance it is compatible with zero and in between it is slightly
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Figure 3: Two-point function of the topological charge density after 5 improved stout smearing steps for an
ensemble of dynamical overlap configurations.
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Figure 4: Zero of the 2-point function of the topological charge density. The errors – which are partly to
small to be seen – result from the interpolation between the points of the correlator. We included fits and
error bands for twisted mass, asqtad and clover action as well as for two different quenched simulations.
There are three different points from the overlap ensembles at different masses: (a) 600MeV, (b) 560MeV
and (c) 510MeV.

negative.
In the continuum, however, this correlator is negative for any finite distance |x− y| > 0 and

has a positive contact term at zero distance which overcompensates the negative contribution to
the space-time integral in Eq. (2.2) to yield a positive topological susceptibility. This follows from
reflection-positivity of the theory and the pseudo-scalar nature of the topological charge density
[17]. Hence, the core size has to vanish and the zero distance correlator has to diverge in the
continuum limit.

We show the core size rc for different actions and lattice spacings in Fig. 4. For the twisted
mass, the nonperturbative clover and the asqtad staggered fermion action we have enough data to
extrapolate to zero lattice spacing. We expect discretization errors which are independent of the
action used and errors related to these actions. As all actions are O(a)-improved the latter should
only set in at O(a2). Therefore, we fit the data with a function of the form

rc/a =C+B ·a2 . (4.1)

We find that the coefficients C almost coincide for all actions and are compatible with C = 2.15
and that the B’s differ [1]. If we compare the curves for twisted mass and clover fermions at
mπ ≈ 500MeV and mπ ≈ 280(250)MeV, we find a relatively weak dependence on the mass. Fig. 4
also includes the results for dynamical overlap fermions with and without topology fixing term at
similar lattice spacings. The data points for dynamical overlap configurations are not on one line,
because they belong to different pion masses and, hence, different fit curves.
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Figure 5: Maxima of the two-point function of the topological charge density (overlap results are labeled
as: (a) 600MeV, (b) 560MeV and (c) 510MeV). Note that the twisted mass results for mπ = 280MeV and
500MeV fall on top of one another.

We have also included two quenched results for comparison. The extrapolations yield a con-
sistent value for the constant C with a slightly larger error than the dynamical configurations. The
quenched results are in accordance with the results of Horvath et al. [16]. They used the fermionic
definition of the topological charge including all Dirac modes and find a core size rc ≈ 2a for the
Iwasaki gauge action.

The mean-square value of the topological charge density 〈q(0)2〉 has to diverge in the contin-
uum limit. Fig. 5 shows a double logarithmic plot of 〈q(0)2〉 in physical units versus the lattice
spacing. The linear behavior indicates a power-like divergence for a→ 0 for all actions.

This observable seems to be very sensitive to the action used. The curves do neither fall on top
of each other nor do they have the same slope. It is also important to notice, that the contact term
for dynamical overlap configurations at a = 0.12fm lies between the two quenched simulations
(plaquette and Iwasaki). Thus we can conclude, that dynamical fermions generate indeed larger
fluctuations in the vacuum at finite lattice spacing, as argued in [15], but also that the differences
between different actions are as large as those between quenched and dynamical simulations.

5. Summary

We have investigated the topological charge density for state-of-the-art lattice actions with
dynamical fermions, including new dynamical overlap simulations. The radius of the positive
topological charge density core approaches zero in the continuum limit with the same slope C for
all actions. At finite lattice spacing the spread is below 10% and even quenched simulations do
not produce markedly different results. Also, simulations with exact overlap fermions give results
which are quite similar to those obtained with topology fixed overlap fermions. The differences
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between quenched and dynamical simulations are not larger than those between different dynamical
fermion actions.

In contrast, the effects for 〈q(0)2〉 are large but unsystematic. These results are very sensitive
to the lattice spacing a, implying that one should be very careful not to jump to conclusions when
comparing topological properties of different configurations.

If we use our dynamical overlap results as benchmark for the quality of the other actions with
respect to chirality we have to conclude that all of them are reasonable successful and none of them
seems to be clearly superior. The differences between results for dynamical overlap fermions and
topology fixed overlap fermions are especially small, as one might have expected. For more details
we refer to Ref. [1].
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