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1. Introduction

Calculating nonperturbative properties of supersymmetric theories on the lattice encounters
various difficulties related to the fact that the discretisation of space-time explicitly breaks super-
symmetry and violates Leibniz’ rule. Moreover, the vanishing of the Witten index in the context
of spontaneous supersymmetry breaking leads to a fermion sign problem which makes straightfor-
ward numerical simulations impossible. While the restoration of supersymmetry can sometimes be
achieved in the continuum limit of the lattice theory, e.g. by fine tuning or by constructing Q-exact
discretisations [1], a solution to the sign problem is not easy to find. A possible way out has been
proposed in [2, 3, 4]. It is based on the fermion loop formulation which can be simulated without
critical slowing down even when a massless goldstino mode is present.

In this work, we apply the fermion loop formulation to N = 2 supersymmetric quantum me-
chanics for superpotentials yielding broken or unbroken supersymmetry. Using transfer matrix
techniques we are able to obtain exact results for partition functions and various observables at fi-
nite lattice spacing. We investigate how the supersymmetric spectrum is recovered in the continuum
limit and how the goldstino mode emerges in the case of broken supersymmetry. In these proceed-
ings we confine ourselves to the presentation of results obtained using a Wilson type discretisation
together with the appropriate fine tuning of counterterms, although results using a Q-exact discreti-
sation have been derived as well.

2. Supersymmetric quantum mechanics on the lattice

The continuum action of N = 2 supersymmetric quantum mechanics can be written as

S =
∫

dt

[
1
2

(
dφ(t)

dt

)2

+
1
2

P′(φ(t))2 +ψ(t)
(

d
dt

+P′′(φ(t))
)

ψ(t)

]
(2.1)

with one real bosonic coordinate φ , two anticommuting fermionic coordinates ψ and ψ , and a
generic superpotential P(φ). The derivative of the superpotential P′(φ) is taken with respect to φ ,
P′(φ) =̇ ∂P(φ)

∂φ
. For periodic boundary conditions (PBC) the action is invariant under two super-

symmetry transformations δ1,2:

δ1φ = ψε, δ2φ = ψε,

δ1ψ = 0, δ2ψ = (dφ

dt −P′)ε,

δ1ψ = (dφ

dt +P′)ε, δ2ψ = 0,

with two Grassmann valued parameters ε and ε . Note that for supersymmetric quantum mechanics
it is the form of the superpotential P(φ) which determines the supersymmetry breaking pattern. If
the highest power of P(φ) is even (odd), supersymmetry is unbroken (broken). A main feature of
supersymmetry is the degeneracy between the energy levels in the bosonic and the fermionic sector.
For unbroken supersymmetry, however, there is one single unpaired energy level at zero energy, i.e.,
a unique ground state, either in the bosonic or in the fermionic sector. This is in contrast to the case
of broken supersymmetry, where the lowest energy levels in both sectors are degenerate and lifted
above zero. In addition, there is a zero energy goldstino mode which mediates between the two
degenerate ground states.
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The supersymmetry breaking pattern can also be partly infered from the Witten index. It is
formally defined as

W ≡ lim
β→∞

Tr
[
(−1)F exp(−βH)

]
,

where F denotes the fermion number operator and H is the Hamiltonian of the system. Essentially,
W counts the difference between the number of bosonic and fermionic zero energy states and its
vanishing provides a neccessary but not sufficient condition for supersymmetry breaking. W can
also be written more explicitely as

W = lim
β→∞

[Trb exp(−βH)−Tr f exp(−βH)] = lim
β→∞

[Z0−Z1] = lim
β→∞

ZPBC , (2.2)

where Trb, f denote the traces over the bosonic and fermionic states. Z0,1 are the partition functions
in the F = 0,1 sectors and ZPBC is the one with periodic boundary conditions. In the language of
field theory, the latter can be calculated via

ZPBC =
∫

DφDψDψ exp(−S) =
∫

∞

−∞

Dφ detD(φ)exp(−Sφ ).

In the last step, the fermions have been integrated out yielding the fermion matrix determinant
detD and the bosonic part of the action Sφ . In this representation, the origin of a fermion sign
problem becomes evident when supersymmetry is broken: a vanishing Witten index requires the
determinant detD to be indefinite.

2.1 Lattice formulation

For the construction of a lattice version of the model, we follow Golterman and Petcher [5] and
employ the same lattice derivative for the bosons as for the fermions. To avoid fermion doublers,
we use the Wilson lattice derivative with Wilson parameter r = 1. In one dimension this simplifies
to the backward derivative (∆− f )x = fx− fx−1 and the discretised action explicitly reads

SL = ∑
x

[
1
2
(P′(φx)2 +2φ

2
x )−φxφx−1 +(1+P′′(φx))ψxψx−ψxψx−1

]
. (2.3)

Due to radiative corrections the lattice theory is, however, not guaranteed to yield a supersymmet-
ric theory in the continuum limit. The corrections can be accounted for either by adding a suitable
counterterm 1

2 ∑P′′ to the action [5, 6], which restores the supersymmetries in the continuum limit,
or by adding the surface term ∑P′(∆−φ) [7, 8, 9] resulting in a Q-exact action. The latter construc-
tion preserves a particular combination of the supersymmetries δ1,2 exactly even at finite lattice
spacing and hence guarantees the correct continuum limit without any fine tuning.

To circumvent the sign problem discussed above, we make use of the fermion loop formulation
[2, 3, 4]. The basic idea here is to exactly rewrite the exponential of the fermion degrees of freedom
as a power series to all orders. Upon integration of the fermion fields, the nilpotency of the Grass-
man variables yields a constraint on the oriented fermionic bond occupation numbers n f

x = 0,1
between the sites x and x− 1 related to the fermion hopping term ψxψx−1, and on the monomer
occupation numbers m f

x = 0,1 stemming from the term (1+P′′(φx))ψxψx. The constraint is given
by

m f
x +

1
2
(n f

x +n f
x+1) = 1 ∀x,

3
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and allows only two fermion configurations: {m f
x = 1,n f

x = 0, ∀x} with fermion number F = 0,
and {m f

x = 0,n f
x = 1, ∀x} with fermion number F = 1. For PBC the latter receives an additional

minus sign relative to the former due to the fermion loop. As a consequence, the partition function
naturally decomposes into a bosonic and fermionic contribution Z0 and Z1, in accordance with
eq.(2.2). It is this decomposition which eventually allows to take care of the fermion sign problem.

In addition to the fermion bonds and monomers we also introduce non-oriented bonds for the
bosonic degrees of freedom, with the corresponding bosonic bond occupation numbers nb

x ∈ N0

[4]. Depending on the symmetries of the action, these bosonic bond configurations may obey
certain constraints. By summing over these constrained configurations {nb

x} we obtain the locally
factorised partition functions with fixed fermion number F = 0,1,

ZF = ∑
{nb

x}
∏

x

1
nb

x!
QF(Nx)

where the local weights QF are defined as

QF(N) =
∫

dφ φ
Ne−

1
2 (P′(φ)2+2φ 2)(1+P′′(φ))1−F

with the bosonic site occupation number Nx = nb
x +nb

x+1. The Q-exact discretisation requires addi-
tional types of bosonic bonds, but still leads to a locally factorised partition function.

2.2 Transfer matrix

The dimensionality of the system allows a further reformulation in terms of a transfer matrix
between states defined on the dual lattice. Each state is characterised by the fermion bond occupa-
tion number number n f and the boson bond occupation number nb, i.e. |n f ,nb〉. Since the fermion
number is conserved the transfer matrix has a block structure consisting of the two matrices T F=0,1

mb,nb

which take the system from state |F,nb〉 to |F,mb〉. To be specific, the transfer matrix elements are
given by

T F
mb,nb =

1√
mb!

1√
nb!

QF(mb +nb) .

In order to keep the size of the matrices finite, we introduce a cutoff on the maximal bosonic bond
occupation number. Keeping it of the order O(102) turns out to be sufficient to render all results
independent of the cutoff.

In terms of these transfer matrices, the partition function for a system with Lt lattice sites is
calculated in each sector F according to

ZF = Tr[(T F)Lt ].

These partition functions can then be combined to ZPBC = Z0−Z1 and ZaPBC = Z0 +Z1 for PBC and
antiperiodic boundary conditions (aPBC), respectively. The construction via the transfer matrices
allows the straightforward calculation of various observables, such as correlation functions, Ward
identities and mass gaps. The latter are directly associated with the eigenvalues of the transfer
matrices. If we denote the eigenvalues of T F by λ F

0 > λ F
1 > .. . , the k-th bosonic mass gap in the

sector F can be calculated as

mF,k
b =−Lt · log

(
λ

F
k /λ

F
0

)
, k = 1,2, . . . ,

4
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Figure 1: The Witten index W = ZPBC/ZaPBC versus the lattice spacing for broken (left plot) and unbroken
supersymmetry (right plot) at various values of the inverse temperature mL. The continuum limit corresponds
to am → 0.

whereas the k-th fermionic energy gap is given by

mF,k
f =−Lt · log

(
λ

1−F
k /λ

F
0

)
, k = 0,1, . . . .

The transfer matrix approach can, of course, be generalised straightforwardly to any kind of dis-
cretisation of the action eq.(2.1), in particular also to the Q-exact discretisation.

3. Results

We now present the results for the action (2.3) with the counterterm using the techniques
introduced above. For our calculations, we use the superpotential Pu(φ) = 1

2 mφ 2 + 1
4 gφ 4 as an

example with unbroken supersymmetry and Pb(φ) =−m2

4λ
φ + 1

3 λφ 3 as an example for which the
supersymmetry is broken. The calculations are performed at coupling strengths g/m2 = 1.0 and
λ/m3/2 = 1.0, respectively, thus we are clearly in a regime where perturbation theory is not appli-
cable. For a system with aPBC for the fermion the temporal extent of the lattice is inversely related
to the temperature T of the system, such that mL → ∞ corresponds to the zero temperature limit.
Finally, the continuum limit is reached by taking Lt → ∞.

3.1 Witten index

The Witten index is determined by the quantity ZPBC/ZaPBC = (Z0−Z1)/(Z0 +Z1). It measures
the relative weight between the bosonic and fermionic sectors Z0 and Z1, respectively. In the system
with broken supersymmetry both ground states are equally favourable, yielding ZPBC/ZaPBC = 0
in the zero temperature limit. Of course, the degeneracy between the two ground states is broken
at finite lattice spacing, so one expects a Witten index W = ±1 in the limit T → 0 at fixed a. It
turns out that for our choice of parameters, the fermionic ground state has a slightly lower energy
at finite a leading to W =−1 in the T → 0 limit, cf. left plot in figure 1. This is true for any finite
a, so the order of the limits limT→0 lima→0 is crucial to obtain W = 0. Note also that for T � 1 the
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Figure 2: Bosonic and fermionic mass gaps mb and m f versus the lattice spacing a, all expressed in units of
the bare mass m. Results for broken and unbroken supersymmetry are displayed in the left and right panel,
respectively. Note that for broken supersymmetry the zero energy Goldstino mode emerges in the continuum
limit.

Witten index tends to zero at any finite a, in accordance with the counting of the states in eq.(2.2)
at finite temperature.

In the situation with unbroken supersymmetry the system is forced to occupy the single unique
ground state in the zero temperature limit, yielding ZPBC/ZaPBC = +1 or −1. Note that for our
specific choice of parameters the ground state is bosonic, hence W = +1. However, while one
finds that the index is pushed away from 0 for T � 1 as before, in the limit T → 0 it will always go
to 1 at any finite a, cf. right plot in figure 1. So it turns out that for unbroken symmetry, the order
of the two limits limT→0 and lima→0 is not relevant.

3.2 Mass gaps

It is also interesting to study how the energy or mass gaps approach the continuum limit. In
figure 2 we show the results for the lowest few masses as a function of the lattice spacing a, every-
thing expressed in units of the bare mass m, for broken (left plot) and for unbroken supersymmetry
(right plot). Since we extract the mass gaps from the eigenvalues of the transfer matrices, the re-
sults are obtained directly in the limit T → 0. As a consequence, for broken supersymmetry, where
there are two degenerate ground states in the continuum, it makes sense to calculate bosonic exci-
tations mb both in the F = 0 and F = 1 sector. The plots illustrate nicely how the supersymmetry
in the spectrum, i.e. the degeneracies between the bosonic and fermionic excitations, are restored
in the continuum limit. Furthermore, when the supersymmetry is broken one expects a zero en-
ergy fermionic excitation, the goldstino mode, which is responsible for the fact that ZPBC = 0.
From the plot it becomes clear how the lattice acts as a regulator for the goldstino mode and, as
a consequence, also for the vanishing Witten index W , hence allowing to give meaning to (finite)
observables even in the system with PBC. Finally, we make the observation that the leading lat-
tice artefacts of the spectral mass gaps are all O(a) except for mb in the F = 0 sector when the
supersymmetry is broken. In that case they are O(a2).
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4. Conclusions

We have presented exact results for N = 2 supersymmetric quantum mechanics on the lattice
using the fermion loop formulation and corresponding transfer matrices. With these techniques we
are able to study in detail how the supersymmetric spectrum is recovered in the continuum limit
and how the Witten index is regularised on the lattice.

In the loop formulation the partition function naturally separates into bosonic and fermionic
contributions and this is crucial for containing the fermion sign problem in supersymmetric sys-
tems with broken supersymmetry. The transitions between the bosonic and fermionic sectors are
controlled by the (would-be) goldstino mode which becomes massless only in the continuum limit.
Since massless fermion modes can be efficiently simulated with the fermion loop algorithm pro-
posed in [2, 3] our approach provides a way to circumvent the sign problem. Indeed, results from
Monte Carlo simulations of N = 2 supersymmetric quantum mechanics have already been pre-
sented in [4] and in this work we have provided the corresponding exact results using transfer
matrices.

It is also interesting to apply our approach to higher dimensions where it allows to investigate
the spontaneous breaking of supersymmetry nonperturbatively and from first principles. In partic-
ular, the approach can be applied to supersymmetric Wess-Zumino models [4] in d = 2 dimensions
and first results from simulations of the N = 1 model including one Majorana fermion and one
scalar field have been presented at this conference [10].
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