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By numerically integrating the differential equations ab&hastic Perturbation Theory, Numeri-
cal Stochastic Perturbation Theory can perform high ordgtupbative calculations in lattice
gauge theory. We report on the computation of renormatimatbnstants for lwasaki gauge ac-
tion and Wilson fermions. We generated configurations dewdint lattice volumes V=12 16*,
204, 24*, and 32. To remove the effect of finite time step in the integratiorstafchastic differ-
ential equations, for each volume we generate configuratiaiifferent time steg=0.010, 0.02,
and 0.030. Renormalization constants are defined in th&RIM scheme. We extrapolate them
to the continuum limit and also correct for finite volume effe Here we present one loop results,
checking that they are consistant with analytical results.
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1. Introduction

This is the era of high precision Lattice calculations, aiming at taking all thesetnoder
control. The computation of renormalization constants are one importardesotierrors. The
debate on how to keep them under control often appears to boil down isstie of Perturbative
vs Non-Perturbative computations. We think the real issue is to correatmermate all the sources
of systematic errors, which for sure include the following:

1. In the perturbative case, one must tackle truncation errors.

2. Since one often defines renormalization constants in massless scheimedlon-perturbative
case there are often chiral extrapolations in place.

3. In both the Perturbative and Non-Perturbative case, one aims apebeting results to the
continuum limit.

4. As a separate issue, finite size effects are often in place as well: thisfonkkample in the
RI'-MOM scheme, which is defined in infinite volume and necessarely simutaiefthite
volumes.

We compute renormalization constants using our method: Numerical Stochexstidoative The-
ory (NSPT). This enables us to reach three loop results. Here outigttatompute renormal-
ization constants for Iwasaki gauge action and Wilson fermions. A firaligdo bridge between
Perturbative and Non-Perturbative results.

2. Methods
We briefly enumerate a few points about our method, enlighting the conteairors.

2.1 Numerical Stochastic Perturbation Theory

In order to get high order perturbative expansions, we use Num&ioahastic Perturbation
Theory. For a comprehensive introduction, the reader is referrea titi¢hature[1]. Here we sim-
ply sketch the very basics facts.

In the Stochastic Quantization framework

%(p,](x,t) = —% +n(xt).

lim (@(x1,1) - @(%n, 1))y = (@(X0) - P0Xn))-

we expand the solution to Langevin equation

%mmemwzyWWn

n>

and compute observables order by order

o[ ol (x0)] =5 O ).



Renormalization constants for lwasaki action Masayasu Hasegawa

The method (which can be taylored to lattice gauge theories) is thus a nunwerégadltohough
perturbative. It has already proved to be very effective in enabligly loops computations, thus
circumventing to a large extent truncation errors.

2.2 RI'-MOM scheme

We compute quark bilinears bracketted in fixed momentum states in Landag giadigmpu-
tate them to geff functions

[ Xl e [p) = Gr(p)  Gr(p) — Tr(p)

We then project on tree-level structures

Or(p) =Tr (PoTr(p)).
We define the field renormalization

1 Tr(psHp)
Zy(M,9) = BT

and finally define renormalization constants

Zor (U,9)Zg H(14,9)Or (P)| oy = 1.

The resulting renormalization scheme is RI'-MOM, for which anomalous dinaasare
know to three loops[2]. This is a very important advantage for us: by gakia relevant anomalous
dimensions from continuum computations, we do not need to fit logarithms iproaedure (see
later, subsection 2.5). This also means that three loops is the highest vg@.cant having at
our disposal anomalous dimensions at higher loops, computing them wauider@n irrealistic
numerical precision.

2.3 No chiral extrapolation: we stay at zero mass

We do not need any chiral extrapolation. In the (Wilson) quark selfegrtbere is an addittive
counter term (critical mass)

ara(p,er, 1Y) = aS(p, Mg, B 1
= ip+riw(p) — Z(P, er, B1)
S (P, fer, BY) = e (P, ier, B1) + Sy (B, ier, B~1) + o (P, er, B
5(0, ey, B1) = 2¢(0, i, B1) = Ay

which we plug in order by order (in our notatign="pa), since it is known from analytical com-
putations to two loops[3]. At three loops we get a novel result from ourputations.
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2.4 Hyper cubic Taylor expansion and Continuum limit
Continuum limit comes from fitting expansions|[4], e.g. for the quark setf-gn(p = pa)
(P, Mer, B71) = Eo( P, fer, B) + v (B, er, B) + Zo( B Ter, )
Let's H4-Taylor expand it
Sy =i % Vi B (i\(,o) + P28 e+ )
>(M are also H4-Taylor expanded

W = oral g el s pl el 5 0is o
v v

The only term surviving th@a — O limit is a§°). Notice that this expansion is free of logarithmic

contributions, since one loop anomalous dimension for the quark field eamnishandau gauge. In
a general one loop case a logarithm would be present, whose coefiicigrown from continuum
computation and thus does not need to be fitted.

2.5 Evaluating finite size effects: get td. — o

Taming finite size effects is a key issue: RI'-MOM is actually defined in infindkime. On
dimensional grounds we expect (take once ag4lt) pL effects

In first approximation
5 (. pL) ~ A5 (pL)

But pyL = “™1 = 2rm,,, i.e. we expect the same correction on different lattice sizes for the same
{ng, Nz, N3, n4}. This enable us to fit only a few extra parameters[5].

3. Results

We are running our simulations at bathh = 0 andns = 4 (the latter being relevant for phe-
nomelogy; it could be cross-checked with Non-Perturbative results fhe ETM Collaboration).
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We generate configurations at different lattice volumes V}=18%, 20, 24*, and 32. Since
we adhere to the simplest (Euler) scheme in the integration of our (stochdiffecgntial equa-
tions, in order to remove the effect of finite time step we generate configusatiodifferent time
stepr=0.010, 0.02, and 0.030 (for each volume).

We are still in the process of generating configurations and measuriegréhiminary results
which we presented at the Lattice 2011 Conference and that we rapbdre come from only a
few measurements as the table below shows:

T=0010 7=0.020 71=0.030
v=12* 80 80 80
v=16* 57 57 57
v=20* 30 30 29
V=244 20 20 20
v=32* 3 2 2

To verify the correctness of our codes we first measured one looltse® be checked against
the known analytical results[6].

m®
c

Figure 1: First loop critical mass andg. The lattice volumes aré = 12* (green diamonds), f6black
stars), 20 (red squares), and 24blue circles). Analytical result is black star, while trercircle is our
result, as obtained by fitting data to the function.

4. Conclusions and Future

This is work in progress. We are still in the process of enlarging our stati$ticusing most
on then; = 4 case. We also point out that there is one result missing to perform thope lo
computations. In order to benefit from the continuum results, we neednpute the two loops
matching of the lattice lwasaki coupling to the continuum coupling (a similar cortipataas been
performed for the Symanzick action[7]).
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Figure 2: First loop results foZs, Z, andZg, in good agreement with analytical results (same notatens
Figure 1).
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