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We present an exploratory study for charmonium radiative transitions: J/ψ → ηcγ , χc0 → J/Ψγ
and hc → ηcγ using N f = 2 twisted mass lattice QCD gauge configurations. The single-quark
vector form factors for ηc and χc0 are also determined. The simulation is performed at a lattice
spacing of a = 0.067(2) fm and the lattice size is 323× 64 with a pion mass of about 485MeV.
After extrapolation of lattice data at nonzero Q2 to 0 , we compare our results with previous
quenched lattice results and the available experimental values.
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1. Introduction

Radiative transitions among various charmonium states are particularly important in the study
of charmonium physics. It is also believed to be the ideal hunting ground for exotic hadronic states
like the glueballs. Recently, the experimental interests have been revived with the upgrade for
the BESIII experiment at BEPCII storage ring [1, 2] which collects charmonium samples that are
orders of magnitude larger than ever.

On the theoretical side, charmonium transitions have been studied using various methods. The
physical process involves both electromagnetic and strong interactions, the former being perturba-
tive while the latter being non-perturbative. Therefore, non-perturbative lattice calculations are pre-
ferred. Radiative transitions of charmonia have been studied comprehensively in quenched lattice
QCD for the normal ground state charmonia and for some excited and exotic ones [3]. However,
an unquenched lattice study is still lacking. In this paper, we briefly report our unquenched study
using N f = 2 dynamical twisted-mass fermion configurations generated by the European Twisted
Mass Collaboration (ETMC). More details of the calculation can be found in Ref. [4].

2. Lattice setup and correlation functions

The lattice setup in this calculation is analogous to the vector form factor calculation of pions
which has been studied extensively, see e.g. Ref. [8]. This leads to the computation of the hadronic
matrix element of the electromagnetic current between the initial and the final charmonium state
〈 f | j(e.m.)

µ (x)|i〉. Although the electromagnetic interaction is perturbative, the matrix element of the
current between two hadronic states is in general non-perturbative which requires non-perturbative
methods like lattice QCD.

Within the framework of lattice QCD, charmonium states are realized by applying appropriate
interpolating operators (O1 and O2 in the formula below) to the QCD vacuum |Ω〉. Thus, the
computation of the hadronic matrix element naturally leads to the following three-point function:

Gµ(t2, t;p2,p1) = ∑
x2,x

e−ip2·x2e+iq·x〈Ω|T O2(t2,x2) j(e.m.)
µ (t,x)O†

1 (0,0)|Ω〉 . (2.1)

In this formula, interpolating operators which will create/annihilate the appropriate charmonium
states are inserted at time slices t = 0 (the source operator) and t = t2 (the sink operator), respec-
tively. Physically speaking, the three-point function defined above represents a process in which an
initial charmonium state with three-momentum p1 = p2−q created by O†

1 makes an electromag-
netic transition to the final charmonium state with three-momentum p2 annihilated by O2 while the
three-momentum difference q is carried away by the photon.

Inserting a complete set of states between the electromagnetic current operator and the char-
monium operators, one finds that, when t2 À t À 1, the desired hadronic matrix element can be
obtained once the energies E1, E2 and the corresponding overlap matrix elements 〈Ω|O2| f (p2)〉,
〈i(p1)|O†

1 |Ω〉 are known, all of which can be obtained from corresponding two-point functions for
the initial and final charmonium states. For this purpose, two-point correlation functions for the
interpolating operators Oi for i = 1,2 are also computed in the simulation:

Ci(t,p)≡∑
x

e−ip·x〈Ω|Oi(t,x)O†
i (0,0)|Ω〉 tÀ1−→ |Zi(p)|2

Ei(p)
e−Ei(p)· T

2 cosh
[

Ei(p) ·
(

T
2
− t

)]
, (2.2)
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where Zi(p) is the corresponding overlap matrix element.
With the relevant two-point and three-point functions, the desired hadronic matrix element

could be extracted form an appropriate ratio from the two-point and three-point functions:

Rµ(t) =
Gµ(t2, t;p2,p1)

C2(t2,p2)

√
C1(t2− t,p1)C2(t,p2)C2(t2,p2)
C2(t2− t,p2)C1(t,p1)C1(t2,p1)

' 〈 f (p2)| j(e.m.)
µ (0)|i(p1)〉

4
√

E2(p2)E1(p1)
(2.3)

where the second equation becomes valid when t2 À t À 1, assuming only the corresponding
ground states dominate. In this case, Rµ(t) becomes independent of t and fitting the ratio to a
plateau behavior yields the desired hadronic matrix element 〈 f (p2)| j(e.m.)

µ (0)|i(p1)〉.
In this study, the conserved vector current operator on the lattice is utilized so that no further

renormalization is required. Disconnected contributions are neglected as is the case for previous
quenched studies [3]. Thus, we only need the charm quark contribution for the electromagnetic
current which is proportional to the conserved vector current jµ(x) on the lattice via: j(e.m.)

µ (x) =
Qc jµ(x) with Qc being the electric charge of the charm quark.

3. Simulation details

3.1 The simulation setup for N f = 2 twisted mass fermions

Twisted mass fermions at the maximal twist are utilized in our study with two degenerate light
flavors in the sea. The framework of maximally twisted mass fermions has been utilized in various
studies of lattice QCD and are shown to be highly promising. It offers several advantages when
tuned to maximal twist, in particular, the automatic O(a) improvement [10] is obtained when the
bare untwisted quark mass is tuned to its critical value.

In this study, gauge field configurations using N f = 2 (u and d quark) twisted mass fermion
are utilized. Other quark flavors, namely the strange and charm quarks, are introduced as valence
quarks as discussed in refs. [5]. In this work, all computations are done using 201 N f = 2 twisted
mass fermion configurations at the lattice spacing of a = 0.067(2)fm (β = 4.05) [7]. The size
of the lattice is 323× 64 so that the spatial extent of the lattice is about 2.14fm, a safe value for
charmonium physics. In the temporal direction, anti-periodic boundary condition is applied for the
quark field while periodic boundary condition is utilized in all spatial directions.

As for the charmonium states, we adopted the Osterwalder-Seiler variant of the twisted mass
fermion [11, 6]. Two-point functions are computed as usual for charmonium states ηc, J/ψ , χc0,
χc1 and hc. Fitting these two-point functions yields the energy for the corresponding charmonium
states, both with and without three-momentum. As for the three-point functions, sequential source
method is utilized [9]. The results for the two-point and three-point functions are then employed
to construct the relevant ratio defined in Eq. (2.3). All errors in this study are estimated using the
conventional jack-knife method.

3.2 Charmonium spectrum and dispersion relations

Before computing the transition matrix element, the mass and the energy dispersion relations
for the relevant charmonium states are verified. Thanks to the O(a) improvement, one would hope
to bring the lattice discretization errors under control. In our simulation, it is found that most of
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the lattice artifacts are remedied by using the lattice dispersion relations for the charmonium states.
We use the mass of J/Ψ from our simulation to set the bare charm quark mass parameter µc.
Reasonable agreement with the experimental values are found for the mass values.

To get a feeling about the size of the lattice artifacts for the charmonium states with non-
vanishing three-momenta, we study the dispersion relations for ηc, J/Ψ and χc0 states. Our data
suggest that the naive continuum dispersion relation is violated, however, if we utilize the standard
lattice dispersion relation 4sinh2(E(p)/2) = 4sinh2(m/2) + 4Z ∑i sin2(pi/2), we could describe
our data extremely well with the fitted values of Z for ηc and J/Ψ rather close to unity.

3.3 Form factors for ηc and χc0

In the continuum, the hadronic matrix element 〈ηc(p2)| jµ(0)|ηc(p1)〉 may be parameterized
by only one form factor f (Q2) as: [3]

〈ηc(p2)| jµ(0)|ηc(p1)〉 ≡ f (Q2)(p1 + p2)µ , (3.1)

where Q2 ≡−(p2− p1)2 is the square of four momentum transfer. To obtain the desired hadronic
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Figure 1: The ratio R0(t) for ηc with p2 = (0,0,0) and p2 = (0,0,1).

matrix element 〈ηc(p2)| jµ(0)|ηc(p1)〉, we form the ratio defined in Eq. (2.3). In Fig. 1 we display
the typical behaviors for R0(t) for p2 = (0,0,0) and p2 = (0,0,1), respectively. It is seen that clear
plateau behaviors have been established from which the form factor f (Q2) can be extracted.

The fitted values of f (Q2) obtained from the ratio are shown in Fig. 2 versus different values
of Q2 where two different type of symbols stands for p2 = (0,0,0) and p2 = (0,0,1), respectively.
Following Ref. [3], we fit the data for the form factor with the following function:

f (Q2) = exp
[
− Q2

16β 2

(
1+αQ2)

]
(3.2)

The fitted parameters turn out to be: α = −0.096(6) GeV−2 and β = 567(2) MeV. This value
of β is larger than the corresponding value 480(3)MeV obtained in the quenched approxima-
tion in Ref. [3], making the corresponding form factor obtained from our unquenched calcula-
tion “harder” (i.e. decays slower with increasing Q2), which can be understood from the effect
of unquenching [4]. One can define a squared mean charge radius

√
〈r2〉 with 〈r2〉 given by

4
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Figure 2: The form factor f (Q2) for ηc.

〈r2〉=−6 f ′(0) = 6/(16β 2). Our unquenched lattice result then yields
√
〈r2〉= 0.213(1) fm which

is smaller than the corresponding quenched value of 0.255(2)fm in Ref. [3].
The hadronic matrix element 〈χc0(p2)| jµ(0)|χc0(p1)〉 for χc0 has the same form of decompo-

sition as that for ηc. In exactly the same manner, we can obtain the form factor f (Q2) for χc0 except
that we have only computed the case p2 = (0,0,0). The data is fitted with the function: f (Q2) =
f (0)exp[−Q2/(16β 2)] and the fit parameters are: f (0) = 1.0002(5) and β = 510(16) MeV. This
value of β is also larger than the quenched value of 393(12)MeV from Ref. [3].

3.4 Charmonium radiative transitions

Transition J/Ψ→ ηcγ
The matrix element 〈ηc(p2)| jµ(0)| [J/Ψ]r (p1)〉 is responsible for the calculation of J/Ψ → ηcγ
transition rate. Here we use the index r to designate the polarization of the initial J/Ψ state whose
polarization vector is denoted by εγ(p1,r). In the continuum, this matrix element can be decom-
posed as [3]

〈ηc(p2)| jµ(0)| [J/Ψ]r (p1)〉 ≡ 2V (Q2)
mηc +mΨ

εµαβγ p2α p1β εγ(p1,r) , (3.3)

Thus the matrix element is characterized by one form factor V (Q2). By forming the appropriate
ratio, relevant lattice results V̂ (Q2) are extracted from the plateaus of the ratios. The relation of
V̂ (Q2) with its continuum counterpart V (Q2) is V (Q2) = 2× 2

3 e×V̂ (Q2), where the factor 2 comes
from the quark and the anti-quark while the factor (2e/3) is due to the charge of the charm quark.
The results for the transition form factor V̂ (Q2) thus obtained are illustrated in Fig. 3. Following
Ref. [3], the data is fitted with the function:

V̂ (Q2) = V̂ (0)exp
[
− Q2

16β 2

]
. (3.4)

The resulting fitted parameters we find are as follows: V̂ (0) = −2.01(2) and β = 580(19) MeV.
With the values of the transition form factor on the lattice, the J/Ψ→ ηcγ decay width can be ob-
tained: Γmphy = 2.84(6) KeV and Γmlat = 1.99(6) KeV, where Γmphy denotes the result with physical

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
1
6
3

Radiative transitions in charmonium C. Liu

mass values are utilized, while Γmlat stands for using the mass values computed from the lattice di-
rectly. This difference arises since our lattice results for the masses for J/Ψ and ηc do not coincide
with their experimental values. Our lattice result for this quantity are to be compared with the value
ΓPDG = 1.58(38) KeV quoted by the PDG. Note that the PDG value is an average of CLEO result
and the Crystal Ball result, the former being 1.92(30) KeV which is closer to our lattice result
while the latter from Crystal Ball being 1.18(33) KeV, smaller than lattice results.
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Figure 3: The transition form factor V̂ (Q2) for J/Ψ→ ηcγ .

Transition χc0 → J/Ψγ
In the continuum, the transition χc0 → J/Ψγ has a more complicated decomposition [3] which is
characterized by two form factors E1(Q2) and C1(Q2). At the physical photon point with Q2 = 0,
only the former contributes. Following a similar process, the form factor E1(Q2) can be obtained.
We then use the form Ê1(Q2) = Ê1(0)(1 + Q2/ρ2)exp[−Q2/(16β 2)] to fit the lattice data [3]. At
the physical photon point Q2 = 0, the decay width for this radiative transition is then obtained:
Γmphy = 85(7) KeV and Γmlat = 65(4) KeV, which is to be compared with the quenched lattice
result of Γmphy = 232(41) KeV and Γmlat = 288(60) KeV.
Transition hc → ηcγ
The form factor of hc → ηcγ decomposes in the same manner as that of χc0, however, the signal
is much noisier. We fit the data for the corresponding form factor Ê(Q2) with a functional form
Ê1(Q2) = Ê1(0)exp[−Q2/(16β 2)]. [3] The physical decay width for the transition is given by:
Γmphy = 234(12) KeV and Γmlat = 210(13) KeV. The corresponding quenched lattice values are:
Γmphy = 601(55) KeV and Γmlat = 663(132) KeV, both of which are about a factor of 3 larger than
our unquenched result, though the errors are somewhat large. The lattice results for this decay can
now be compared with the recent measurement at BES-III: [12] Γ(hc → ηcγ) = 396(294)keV. The
agreement within a large error is seen although improvements from both experiment and lattice
calculations are required to cut down the large uncertainties for this quantity.

4. Summary and conclusions

In this exploratory study, we calculate the form factors for some of the ground state charmonia
and their radiative transitions using unquenched N f = 2 twisted mass fermions. Our study focuses

6
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Table 1: Summary of the results obtained in this work. Also listed are the corresponding results from
quenched lattice QCD [3]. Experimental values or values from PDG are also listed whenever available.

Γmphy/Γmlat[keV] β [MeV]
J/Ψ→ ηcγ χc0 → J/Ψγ hc → ηcγ ηc χc0

PDG 1.58(38) 119(11) 396(294) - -
This work 2.84(6)/1.99(6) 85(7)/65(4) 234(12)/210(13) 567(2) 510(16)
Ref. [3] 2.57(11)/1.61(7) 232(41)/288(60) 601(55)/663(132) 480(3) 393(12)

on the form factors for ηc, χc0 and the J/Ψ→ ηcγ , χc0 → J/Ψγ , hc → ηcγ radiative transitions. It
is verified that, by using lattice dispersion relations instead of the naive continuum ones, the lattice
artifacts for these charmonium states are well under control. By computing various appropriate
ratios of the three-point functions to the two-point functions, hadronic matrix elements for these
transitions are obtained at various values of Q2. Using the parameterized form in terms of relevant
form factors, we obtain the lattice results for the relevant form factors and the radiative decay
widths for these channels. Our results are summarized in Table 1 which are to be compared with
those obtained in previous quenched lattice studies and experimental values.

In this preliminary study, we simulate at only one lattice spacing and sea quark mass, and
neither chiral nor continuum extrapolation is made. We argued that, thanks to the automatic O(a)
improvement, the lattice artifacts is under control. With the experience gained in this study, it
is feasible to study charmonium radiative transitions in a more systematic manner (more lattice
spacings, more pion mass values etc.) using unquenched lattice QCD in the future.
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