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1. Introduction

Staggered fermions are an inexpensive and popular way of discredizargs on a space-time
lattice. They preserve a chiral symmetry with a local action at the expensentdining extra
modes that quadruple the number of quark species being simulated. Tdrepjed species, called
tastes, are mixed at nonzero lattice spacing, but are expected to producenétependent quark
flavors in the continuum limit. Evidence of this behavior can be seen in the losneadues of
the staggered Dirac matrix. At small lattice spacings the eigenvalues tend ter ¢hus distinct
guartets which represent the four tastes. As the lattice spacing is datrédas eigenvalues within
a quartet will become more degenerdle [1].

In [B] a Random Matrix Theory (RMT) for staggered lattice fermions wasoguced to de-
scribe the low eigenvalues of the staggered Dirac operator. The stalg@®IT (SRMT) adds addi-
tional terms to the standard chiral Random Matrix Theory that have thepipate symmetries of
the lattice operator. These additional terms in the SRMT reproduce the Kdgath (ignoring any
extra factors otrs which we drop for convenience) taste breaking terms that appear in guyesta
chiral Lagrangian.

The SRMT is equivalent to the staggered chiral Lagrangian at zero momerhis equiv-
alence has been demonstrated for the fermionic partition function, but iconjgctured for the
partially quenched case, which is related to the eigenvalues of the Direatopdiere we will di-
rectly compare estimates of the size of the taste breaking in lattice simulations deg:from the
staggered chiral Lagrangian (in tiperegime) with estimates obtained from comparing low eigen-
values to the SRMT predictions (in tlgeregime). Our initial tests show good agreement with the
predictions of SRMT in support of the conjectured equivalence of thiéafig quenched theories.

2. Staggered Chiral Lagrangian
The effective chiral Lagrangian for staggered fermions at cadlés given by [B[}]
2
$:%<0HU0HUT>—%Zom<U +UTy +a?y (2.1)

where(X) stands for the trace of, andF andX, are the low energy constants (LECs) related to
the pion decay constant (with the convention that the physical valug ferl31 MeV) and the
magnitude of the chiral condensate, respectively. The taste breaking ¢an be divided into two
parts’¥” = 71t + ¥a. The first part contains the single-trace terms (wjih= y;,)
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3. Staggered Chiral Random Matrix Theory

The (fermionic) staggered chiral random matrix theory partition functionbeawritten as[j2]

N
Z = [ dWpo(W T detD 3.1
SRMT / Po(W) pr ( )Dl etD+my) (3.1)
with
0 iw
D— (in '0 >®H4+aT. (3.2)

whereW is a(N + v) x N complex matrix withv the absolute value of the topological charge and
T incorporates the taste breaking terms. The matrix potentidV/fa conveniently a Gaussian,

po(W) = exp(—aN (W'w)) (3.3)

with \/a = ZgV /2N (V is the four volume).

The taste breaking contribution to the SRMIT) has eight terms that correspond directly with
the eight taste breaking terms of the chiral Lagrangian. Its complete foswiwan in [2]. As an
example, th&C, term corresponds to

A, O
T:%(JBJ@% (3.4)

whereA;, andB,, are Hermitian matrices of siZ&N + v) x (N4 v) andN x N, respectively. For
convenience we can choose a Gaussian weight function for these matrice

2
pT4:exp<—zavl\|Q1 u <A§>+<Bﬁ>) . (35)

One can then show that the (fermionic) RMT with this extra matrix term is equittdethe zero-
momentum staggered chiral Lagrangian with ju€idaste breaking term.

Note that while the correction to the RMT enters at omlehis still reproduces a term of order
a? in the chiral Lagrangian. This is due to the taste breaking terms in the SRM§ trateless.
As demonstrated irf[[2], when expanding the determinant of the SRMT Diraaxprthe O(a) term
vanishes for this reason, and results in a partition function that has adeeatirections aO(a?)
even though the SRMT Dirac operator has term© ).

The two-trace terms can be incorporated in the SRMT in a couple of waysis@madd terms
such as

bu]IN+v 0
3.6
( 0 ibu]IN>®€“5 (3.6)

with a Gaussian weight for the scalgf. This will give a contribution to th€;, andCsa terms.
While this term will reproduce the correct term in the chiral Lagrangiarastimno analogue in the
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lattice Dirac matrix. This term is of the form of a fluctuating taste-dependens,mdsch is not
present on the lattice.

An alternative form for the two-trace terms is to simply modify the potentials fonta#ix
terms corresponding to the one-trace terms. By replacing the simple Gawssign with one that
also includegA, ), (B, > and(A, ) (B, in the exponential, the coefficients can be tuned to give
the correct two-trace terms in the chiral Lagrangidn [2].

4. Generalized Staggered Random Matrix Theory

If we look at the final form of the SRMT Dirac matrix, we see that it is the mestegal ma-
trix that is consistent with the symmetries of the staggered Dirac operatornitiislarmitian and
anticommutes with the staggered chiral symmetry ma#gi® és. As mentioned in the previous
section, the single-trace terms from the chiral Lagrangian are repeddycconsidering indepen-
dent Gaussian weights for the remaining matrix elements. Meanwhile the tveoténaas can be
reproduced by adding two-trace terms to the RMT weights.

In this manner one could consider generalizing the SRMT to include more tethesiveight
function in an attempt to reproduce higher order terms in the chiral Lagrarigt zero momen-
tum). One can then draw an analogy between the formulation of a RMT anu effective La-
grangian. For the Lagrangian one includes all terms, up to some ordesy¢heonsistent with the
symmetries. Likewise for the RMT one can consider a matrix containing all eksngensistent
with the symmetries of the Dirac operator, with a generalized weight functicchése matrix ele-
ments up to some level of complexity. Of course the mapping from the RMT pdtentiee chiral
Lagrangian at higher order may not be as simple as in the SRMT preseamedblat one could
speculate that a generalized RMT could reproduce all higher order t#rtims chiral Lagrangian.
Again this equivalence only holds for the zero momentum Lagrangian, sigiso possible to
reduce the full Lagrangian to an effective zero momentum Lagrangiara(fecent example see
[B]), which then might be representable as a RMT.

5. Dominant form of taste breaking

Most of the taste breaking coefficients can be measured in lattice simulati@osriparing to
staggered chiral perturbation theory@ST) results. The four single-trace parameters are uniquely
determined from the splittings of the pion masses at leading offler [4]. Typtba C, term is
found to be the dominant contribution to the pion spectr{im [3]. The two-ti@wes enter in
SxPT formulas in the combinatiorﬁ@fA = (Cyv,a) £Csqv,ay)/2. They don't contribute to the pion
splittings at leading order, but ti&, andC,, terms do appear in one-loop expressions, while the
C4 andC; terms do not[[4]. In lattice simulatior®, has been found to be larger thap [f].

Both of the dominant term€;4 andC,, come from same term in the SRMT with the more
general form for the weight function. This supports the idea of coatty the SRMT from a
single matrix with the correct symmetries and with a generalized weight fundBased on the
lattice measurements, the leading contribution to taste breaking in the staggeredn@trix has
an axial-vector taste structure. If one imagined rotating the staggeredrBataix into a taste basis
and then expanding in powers afthe dominant correction at ordarwould then have the same
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Figure1: Number variance of the lowest eigenvalues of th&lagtice ensemble and the SRMT.

form as in [34). Of course the exact potential for the lattice Dirac matrixidvbe much more
complicated than in the SRMT, but the leading effects at low energy carpbered by the SRMT
weight function considered here. Among the terms in the SRMT potentiaésymonding to the
axial-vector matrix, we have no reason to favor one over the other, smouts naively expect
them to be of similar magnitude. We would then expect the corresponding terthe hiral
Lagrangian to be of similar order, and also dominant over the corresmptetms with other taste
symmetries, which is consistent with lattice measurements.

6. Extracting LECsfrom RMT

The RMT predictions for the eigenvalue correlations can be used to ekE&s from lattice
simulations. For examplEy can be obtained by fitting to the eigenvalue density. Addition&ally
can be obtained from the correlations of eigenvalues with an imaginary chigmoiential [f].

If the taste breaking is small enough then these methods can apply directlgdersd eigen-
values by replacing each quartet of eigenvalues with its avefhge [tisloase one could also try
to extract the taste breaking parameters from the splittings of the eigenvatbasthe quartet. In
practice, it would likely be too difficult to extract all the parameters, but & assumes that tit&,
term is dominant, then it should be possible to estimate it from comparison to thd SRM

However, if the taste breaking is large, then the higher order taste bgetkins can become
important. In this case the effective chiral Lagrangian reduces to a dlagte for the remaining
staggered chiral symmetry with a new set of LECs that are in principle wedeta the original
ones [R]. Thus extracting the LECs from low eigenvalues when thergt atear quartets present
may not yield the continuum LECs in chiral Lagrangian.
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Figure2: Individual integrated densities of the lowest four eigdnea from the 32 lattice ensemble and
the SRMT. The dominant taste breaking parameter in the SRMEtitoa?VC4 = 0.3 (left) and 02 (right).

7. Comparison to lattice smulations

As an initial test of the SRMT, we will compare the leading order taste brea&ingobtained
from fitting the Dirac operator eigenvalues to the SRMT with that obtained fithimg the pion
spectrum to the staggered chiral Lagrangian. Since it is difficult to gitgheslattice ensemble
that we could use for both measurements we will use two ensembles with afigiera identical
except for the volume.

For the pion masses we use an ensemble from the MILC collaboration 2-el#t HISQ runs
[B]. The ensemble has a volume 03296 with a lattice spacing af ~ 0.09 fm and with a light
quark massn = mg/5. From the pion mass splittings we can get the single-trace taste breaking
terms in the chiral Lagrangian. Using a valudof= 131 MeV, this gives

a?VC; = 0.03(8), a?VCsz = —0.03(4), a®VCys=0.84(4), a’VCs=0.03(3). (7.1)

We can see here th@ is clearly dominant, as expected, and that the other coefficients are all
consistent with zero.

We generated a new ensemble of 430 lattices of siZev@P all other parameters the same as
the previous ensemble. From the volume scaling we expect to find

a?VCy = 0.28(1) (7.2)

on this new ensemble. We then compare lattice eigenvalues with numerical sinailatitre
SRMT with only theC, taste breaking term. For this comparison we choose to use the number
variance statistic. This shows the fluctuations (variance) in the numberarfv@lyies in an inter-

val starting at zero versus the average number in the interval. We evdhitia@nerically from
simulations of the SRMT witiN = 400.

In Figure[1 we plot the number variance of the lattice eigenvalues agair&RiMd at different
values ofa?vVC,;. We can see that the best agreement for small intervals (up to around 2 to 4
eigenvalues) is &?VCy ~ 0.3. This is in good agreement with our predictipn]7.2) obtained from
the pion mass splittings. As the length of the interval grows, the lattice result$cstaove away
from the SRMT result. This is likely due to higher momentum modes entering onttloe Jahat
aren't captured in the RMT. This happens at the QCD equivalent oftibel€ss energy[][9], which
for this ensemble, in units of the average eigenvalue spaciffy&/ ~ 3.5. This is consistent
with our observations from the number variance.
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As a further check that the SRMT describes the low eigenvalues of thgestagDirac oper-
ator, we look at the individual integrated densities of the lowest four eajees. In Figur¢]2 we
see the integrated density from the*3&ttice along with that from the numerical simulations of the
SRMT at two different values of the taste breaking parama?¢C, = 0.2,0.3. We can see that
the value of (3 fits the lattice data much better than a,0again confirming that the predictions
of the SRMT fit the lattice data well and give estimates of the taste breakinghptaes that are
consistent with the staggered chiral Lagrangian.

8. Summary

We have shown a chiral RMT that incorporates all leading order tastkibigeterms from
staggered chiral Lagrangian. The SRMT can be constructed by evimgjch RMT with same
symmetries as the staggered Dirac operator and a generalized weigidriurnitial tests show
that the predictions of the SRMT are in good agreement with lattice simulations \lighirange
of validity of the SRMT. Additionally, using the predictions of the SRMT, the damnintaste
breaking parameter can be extracted from the low eigenvalues of thestddgjirac operator and
gives consistent results with that obtained from the pion mass splittings.
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