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1. Introduction

Gauge theories with many flavors are paid attention, as candidates ofcbthaistandard
model physics which might give a solution to the hierarchy problem. In thikwee investi-
gate a model which consists of SU(3) gauge theory coupled to 12 massiessrf flavors in the
fundamental representation. We study the running of coupling const#misiaystem. Our main
concern here is the existence of the infrared fixed point, which is a selmefependent property
of the model. In the infrared properties of such a system, nonpertuleditacts are dominant, and
the numerical simulations with the lattice regularization are very useful tootemsnstrated in
QCD. So far, this model has been studied by several groups using latticiasons with different
methods [1]-[7]. At this moment, they have not yet reached a clear nease In this work, we
adopt the Twisted Polyakov Loop scheme [8][9][10] to study the runomgpling constant. This
method is different from those used by others. We show result whicpostgpthe existence of
conformal fixed point.

We already published several articles using this method [11]-[14]. Tbik i8 the continua-
tion of Refs. [12][13]. The data set used here is almost the same asookireported in Ref. [11].

This paper is organized as follows. In Sec. 2, we give a review on twigigddary conditions
and the Twisted Polyakov Loop scheme, which we used to calculate themalimed coupling
constant. In Sec. 3, we explain the details of the set up of our simulatioes.eghlts are given in
Sec. 4. Summary and comments are given in Sec. 5.

2. Twisted Polyakov L oop Scheme

In this section, we explain the twisted boundary condition and our definitioermrmalized
coupling constant using Polyakov loops. The twisted boundary condégarits in infrared cut-offs
in both gluon and fermion propagators. Then, the calculation of step sdatsgion is feasible
without using the Schroedinger Functional method, in which Dirichlet bagndonditions are
required.

The twisted boundary condition for the link variables is given as

Uy (x+ ULy /a) = Q U, (X)QF. (2.1)

We apply this condition only fov = 1,2 direction. HereQ;(i = 1,2) are SU(3) matrices which
satisfy the condition®;Q, = €27/30,Q; ,Q,Qf =1, (Qu)3 = 1and Tr[Q,] = 0. Their explicit
form can belQ1]an = 8 modibi2,3)+1 aNdQ2 = diage 23,6273 1). Forv = 3,4 direction, we
implement the periodic boundary conditidRz = Q4 = 1.

The Polyakov loops in the twisted directions are

P1(X2,X3,Xa) = Tr < [H Up (X1 = J,X2,%3,X4)
j

Q, g2/ <3L2>> . (2.2)

The extra terms are added to maintain gauge invariance and translationrinearighe coupling
constant can be defined as the ratio of the correlators of Polyakovilotpstwisted direction and
periodic direction,

(Pu(x4 = 0)"P1(x4 = La/(28)))

— kA2
(Po(xa = O)TPs(xs = Lu/(22))) 0 (2.3)
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with the factork = 0.03184... which is given by calculating one-gluon-exchange diagram. In
the actual analysis, we average over data that are related by transtadi®®-@egree rotation, to
reduce the statistical errors. To apply the twisted boundary condition tys$hens with fermions,
we need to introduce another degree of freedom, "smell", to ensure tlle-saluedness of

W (x + L11 + L»2) under the application of two boundary twisting xpandx, directions, with
the different ordering. The boundary condition is given by,

WE(x+Ly0) = €720 yYp (Q))f, (2.4)

The indicesa, B are labels for the "smell" degree of freedom. The faetBf® are multiplied to
eliminate the zero-momentum modeun= 1,2 direction. Forv = 3,4 direction, we implement
the periodic boundary conditiony(x+ L, V) = y(x). The number of "smell"s is the same as
the number of colors. The "smell" index does not combine with the gauge éiettljt can be
considered as the another flavor index. Under this condition, the nunfifivors should be
multiples of 4tastg x 3(smell) for the dynamical simulations with staggered fermions without
taking roots of fermion determinant.

3. Setting of Simulations

To study the scale dependence of the coupling constant by lattice simulat®nswasure the
step scaling function, which is defined as

o(u,s) = ¢ (i)

This is calculated by taking the continuum limit of the lattice step scaling fun&ifars,L/a).

(3.1)

=@ (1)

Z(U, S, L/a) = gﬁattice(ﬁﬁ'—/a) ‘u:gZamce(B,L/a) ’ (32)
o(u,s)= lim Z(u,sL/a) with L fixed. (3.3)
a/L—0

In this work, we fixs= 2, and definer(u) = o(u,2) andx(u,L/a) = Z(u,2,L/a).

We have done the hybrid Monte Carlo (HMC) simulation for SU(3) gaugeryhedth 12
dynamical flavors by using staggered fermion. Twisted boundary conglitice applied for the
gauge field and fermion field as explained in the previous section. For tloa glction, we
use plaquette gauge action at= 4.5 ~ 100. In all simulations, we set the mass of fermions
to be zero. We used hyper-cubic bbx/a = Ly/a = L3/a = Ls/a = L/a with the lattice size
L/a between 6 and 20. Then the lattice step scaling function is calculated by usiragptin
binations of(L/a,sL/a) =(6,12), (8,16) and (10,20). The simulation was done by selecting the
starting configuration to be in the true vacuum, which leads to a non-zese pfi&olyakov loop (
arctar{im(P,) /Reg(Py)) ~ +2m/3) in u = 3,4 direction, as discussed in Ref. [13]. The simulation
parameters are summarized in Table 1.

For the largest lattice /a = 20, we perform the HMC simulations on GPUs. The simulation
code was developed by using CUDA [15]. We used around-3M0 GPUs at the same time.
Most of them are Tesla 1060. We used one GPU for one Markov chainedch parameter set,
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Lattice Size B

6% 45,4.7,5.0,5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10.0
12.0, 14.0, 16.0, 18.0, 20.0, 50.0, 100.0

8t 45,4.7,5.0,5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10.0
12.0, 14.0, 16.0, 18.0, 20.0, 50.0, 99.0

104 45,5.0,5.5,6.0,6.5,7.0, 8.0, 9.0, 10.0

11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 20.0, 50.0, $9.0

124 45,4.7,5.0,5.3,5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10.0
12.0, 14.0, 16.0, 18.0, 20.0, 50.0, 99.0

16* 5.3,5.5,5.7,6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0
12.0, 14.0, 16.0, 18.0, 20.0, 50.0, 99.0

20t 5.7, 6.0,6.5, 7.0, 8.0, 9.0, 10.0

12.0, 14.0, 16.0, 18.0, 20.0, 50.0

Table 1: Summary of simulation parameters

we produced 10 to 50 Markov chains at the same time, starting from the sathe@®iguration
which is thermalized for that parameter set. To remove the correlation betiaedifferent Markov
chains with the same starting configuration, we discarded 500 trajectorieslyedginning of each
Markov chain. The performance of the simulation with GPU is around 25 GFopaverage
(sustained).

To extracto(u,s) in Eq(3.1), in practice, we have done simulations with all beta values listed
in Table 1 first, then we perform the interpolationgrfor the renormalized coupling at fixed a.
The lattice step scaling functions (3.2) are calculated from the interpolalieesvaf the renormal-
ized coupling constant. For this interpolation, we used non-decreasipggpoials with degree
(2n+1),

2
n
f(x) :/dX<Z>CI x') = ho+ hax+ - - -+ hgpy M (3.4)
|=

with x = 1/B. Here, we chooskg to be 0 andh (= ¢3) to be 6 to match with the perturbative
expansion. Thus the number of free parameters becomeg).

4. Results

In Fig. 1, we show thg8-interpolation of renormalized coupling constant. The degree of the
polynomial(2n-+1) in Eq. (3.4) is chosen, at fixdd/a, such that it leads to the smallggt/(d.o.f.),
as shown in Table 2. From Fig. 1-a to Fig. 1-c, it is clear that the smiflaris, the larger the
difference between?(B,2L/a) andgZ,(B,L/a) is. This is particularly obvious in the infrared
regimeg?att > 2. It means that, for a given input coupling the lattice step scaling function is
smaller for the larget./a, as shown in Fig.2-a. From Fig. 1-d, we see tgaf..(B3,L'/a) >
g’]?emice(B,L/a) for L'/a > L/a except for ultraviolet region. This means, outside the asymptotic-
freedom regime, the lattice step scaling functidn, s,L /a) is larger tharu for any step size.

In Fig. 2, the lattice step scaling function and the continuum limit are showm Eve Fig. 2-
b, we see that linear fit gives much smaljg/(d.o.f) in the regionu = 1.8 ~ 2.4, on the other
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hand, constant fit gives a larger value)dt/(d.o.f) ~ 0.8 to 20 in that region. Fan =1~ 1.7,

the x2/(d.o.f) from constant fit and linear fit are about the same. From these, wéuderthat the
linear fit is much preferable than the constant fit. In Fig. 2-c, we show iiwth ratio o(u)/u.

To estimate the systematic error, we changed the number of fit parametersGnritezpolation
Eq. (3.4), from the choices given in Table 24y for all lattice sizes. We calculated the step scaling
function using all possible®&ombinations for this interpolation. The narrow (red) band in Fig. 2-c
is the statistical error associated with the procedure using the best fit (@viimeters in Table 2)
for the B interpolation. On the other hand, the wide (purple) band indicates the talg@ation
(including the statistical fluctuations) from the central value of the bestdit the 3 interpolations
that we carried out. Therefore, this band contains both statistical atehsféc errors. In Fig. 2-c,

it shows thato(u)/u is consistent with one in.I9 < u. This supports that this theory contains an
infrared fixed point.

Sizel /a 6 8 10 | 12 | 16 | 20
Number of points 17 | 17 19 | 18 | 17 13
Number of fitting parameters 8 8 6 5 8 7
Degree of polynomial 19 | 19 | 15 | 13 | 19 | 17
x?/d.of. 1.04| 0.97| 0.59| 1.65| 0.54| 0.61

Table 2: x2/d.o.f. for the fitting of beta.

5. Summary and Comments

In this work, we show the existence of the infrared fixed point (IRFP)U(3$ gauge theory
with 12 massless fermions in the fundamental representation, by using ttsealieg method with
the Twisted Polyakov Loop scheme. The results presented in this articlbtaread with step size
s= 2. The location of IRFP reported here is consistent with our work [libjgustep sizes= 1.5.

The lattice step scaling function exhibgu,L/a) > u at finite lattice spacing, except for
the ultraviolet region. On the other hand, the step scaling function in the comtitimit shows
that o(u) ~ u in the infrared region. This property at finite lattice spacing is differemnfthe
results in the step scaling function study using the Schroedinger Funcireahe [1][2], in which
>(u,L/a) ~ uin the infrared region even at the finite lattice spacing.
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Figure1: (a, b, c) - The renormalized coupling from the simulationstvewn by points with error bars. Fit
functions ¢ error byAx? = 1) are shown as curves. The lattice sik¢a are(6,12), (8,16) and(10,20),
respectively. The value of input couplingor the step scaling function at the left and right edges @ Fic,
0.6 and 2.4, are shown for the guide of eyes. (d) - Centralegabf the fitting function for all sizes are
shown.

National Science Council of Taiwan via grants 99-2112-M-009-00¥3Nnd 099-2811-M-009-
029.

References
[1] T. Appelquist, G. T. Fleming and E. T. Neil, Phys. Rev/78 076010 (2009) [arXiv:0901.3766
[hep-phl].

[2] T. Appelquist, G. T. Fleming and E. T. Neil, Phys. Rev.1.400, 171607 (2008) [Erratum-ibid.02,
149902 (2009)] [arXiv:0712.0609 [hep-ph]].

[3] T. Appelquist, G. T. Fleming, M. Lin, E. T. Neil and D. A. Baich, arXiv:1106.2148 [hep-lat].
[4] T. DeGrand, arXiv:1109.1237 [hep-lat].

[5] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroed®iXiv:1104.3124 [hep-lat].

[6] A.Hasenfratz, arXiv:1106.5293 [hep-lat].

[7] A. Hasenfratz, Phys. Rev. B2, 014506 (2010) [arXiv:1004.1004 [hep-lat]].

[8] M. Liischer and P. Weisz, Nucl. Phys.Z86 (1986) 309

[9] G. M. de Divitiis, R. Frezzotti, M. Guagnelli and R. Petizio, Nucl. Phys. B122 (1994) 382



The IR behavior of SU(3) Nf=12 gauge theory -about the existence of conformal FP- Kenji Ogawa

T T T T 100 T T T T
(a) linear extrapolation ——— (b) Linear Fit ——
3+ lattice Sigma(u) % A Constant Fit
inputu = * Constant Fit L/a=8,10 =
25 E ' o
1 ¥ ¥ * i)
s T « 3 ks
o o2p . x g
£ =]
'(%) x * * * g
15 % . x M = \
- « x x © \
- 4V i
1t . x " 0.01 | |1 ;
- - - . ||
05 - . - Lx . . . \J
0 0.005 0.01 0.015 0.02 0.025 0.03 0.001 - - - - - - - -
2212 0.6 0.8 1 12 14 16 18 2 22 24
input coupling u
11
C
©) 1o
1.06 | x I
1.04 | LR e
=] Agtd
= 102 {W‘M"H TH
[
£ 1 f
p= uuw,ﬂ\“
(0]
0.98
Linear Fit ——
0.96 - Error (Stat. + Syst.)
l [
0.94 2-loop s
1-loop
0.92 :

06 08 1 12 14 16 18 2 22 24
input coupling u

Figure 2: (a) - The lattice step scaling functidt(u,L/a) and the step scaling function in the continuum
limit o(u) with linear fit. (b) - The quality of fity?/(d.o.f) for linear fit, constant fit and constant fit with
only finer lattice. (c) - Growth rati@(u)/u with linear fit. Systematic errors are given by changing the
degree of polynomial in fit function. The result of pertuitsatcalculation using one-loop and two-loop are
also shown. — Step size is 2 for all panels (a),(b),(c).

[10] G. M. de Divitiis, R. Frezzotti, M. Guagnelli and R. Patizio, Nucl. Phys. BI33 (1995) 390
[11] T. Aoyamaet al., arXiv:1109.5806 [hep-lat].

[12] E. Bilgici et al., POSL AT2009, 063 (2009) [arXiv:0910.4196 [hep-lat]].

[13] E. ltouet al., POSLATTICE2010, 054 (2010) [arXiv:1011.0516 [hep-lat]].

[14] H. Ohkiet al., PoOSLATTICE2010, 066 (2010) [arXiv:1011.0373 [hep-lat]].

[15] NVidia Corporation CUDA Programming Guide,
http://ww. nvi di a. conf obj ect/ cuda_devel op. ht m



