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The Unitary Fermi Gas (UFG) is one of the most strongly inteng systems known to date, as
it saturates the unitarity bound on the quantum mechangzdtesing cross section. The UFG
corresponds to a two-component Fermi gas in the limit oftsihhé@raction range and large scat-
tering length, and is currently realized in ultracold-aterperiments via Feshbach resonances.
While easy to define, the UFG poses a challenging quantum-inady problem, as it lacks any
characteristic scale other than the density. As a conseguancurate quantitative predictions of
the thermodynamic properties of the UFG require Monte Caaloulations. However, significant
progress has also been made with purely analytical methidatsbly, in 2005 Tan derived a set
of exact thermodynamic relations in which a universal gilakhown as the "contact" C plays
a crucial role. Recently, C has also been found to deterrhim@tefactor of the high- frequency
power-law decay of correlators as well as the right-handéssof shear- and bulk viscosity sum
rules. The contact is therefore a central piece of inforomatin the UFG in equilibrium as well
as away from equilibrium. In this talk we describe some ofkhewn aspects of Fermi gases
at and around unitarity, show our latest Monte Carlo redualtshe contact at finite temperature,
and summarize the open questions in the field, some of whichresstarting to answer using
large-scale Monte Carlo calculations by adapting methoms f attice QCD.
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1. Introduction

In recent years, our understanding of universality [1] im-melativistic many-body quantum
mechanics has increased dramatically. By universality veamindependence from the details
of the interaction, in the same sense as in the context ofideamer phase transitions, but in the
absence of long-range correlations throughout the systgoept potentially at special points in the
phase diagram). Among the systems displaying this propeetjraps the most dramatic example
is the so-called unitary Fermi gas (UFG). This system is adammponent Fermi gas tuned to the
limit of vanishing interaction rangeg, and large s-wave scattering length and is termed "unitary”
because it saturates the unitarity bound imposed on theesogtcross section by the unitarity of
guantum mechanics. In short, the unitary gas is a resonantgu mechanical many-body system.

A few years ago, the unitary limit was realized in metastaitfl@cold atomic clouds in various
laboratories around the world (see Ref. [2] for a review @& #xperimental situation) and has
been under intense scrutiny by the atomic, molecular aridadgthysics (AMO) community ever
since [3]. Interest in the UFG transcends those areas, hayeith a considerable amount of
research being carried out within the nuclear physics conitywvell before and after the first
AMO experiments [4]. This, of course, is itself a manifestatof the universality of the UFG,
as nuclear systems characteristically display short magd unnaturally large scattering lengths,
although in a vastly different absolute scale than atontad$, the natural scale being in each case
the Fermi momenturk.

More recently, the limit 0— kzry < 1 < keag — o has been shown to imply non-relativistic
conformal invariance, as described in Ref. [5]. In turns tld@sults in a set of non-trivial relations
between the system in homogeneous space and in a harmgmiagrirst shown in Ref. [6, 7]. In
a separate line of research, short-distance correlatiens shown by Tan [8] and others [9, 10] to
be completely encoded in a quant@ywhich Tan called the “contact”. Specifically, we may define
the contact as

C= lim k*n, (K), (1.1)

wheren, (k) is the momentum distribution for spio expressed as a thermal average. This re-
markable property stems in part from the short-range natitiee interaction, which implies that
at resonance the many-body wavefunction is essentialtyofha free gas, with the added bound-
ary condition that it diverges ag/d when two coordinates are set to a short distance agjadt].
Following the work of Tan and others, the last couple of ydage seen considerable activity
extending the analysis of short-range correlations in M@udy systems to systems away from
unitarity as well as to different dimensions [12] and to avgjrm set of thermodynamic and even
hydrodynamic quantities [13, 14]. The latter, in particul@oint to the fact tha€ is relevant not
only in equilibrium but als@way from equilibrium (see Ref. [15] for a comprehensive review)

In spite of experimental advances and progress from thedioamd analytic points of view,
the UFG remains a challenging many-body problem. The refmsdhis is that, while resonant and
therefore strongly interacting, the UFG has as few scaleswas-interacting Fermi gas. Enhanced
symmetries aside, such a lack of scales implies lack of gpaaéimeters to perform an expansion,
such that non-perturbative numerical methods are requitedeed, while we know that Tan’s
contact plays a crucial role in the dynamics of the UFG, thlg aray to determine it accurately
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and reliably is by using numerical methods such as QuantumtdiGarlo (in any of its various
incarnations, in particular on the lattice).

The work shown here represents the first attempt to detertiéneontact at finite temperature
in a non-perturbative fashion. To this end, we have adaptetthads from Lattice QCD, namely
Hybrid Monte Carlo [16] and applied them to the calculatidihe momentum distribution of the
UFG. The next section outlines the main features of the algorand Sec. 3 shows our results and
conclusions, which were first published in Ref. [18].

2. Algorithm & lattice formulation

The lattice formulation we have used for this work followsszly that of Ref. [19], but differs
in at least three notable aspects. Firstly, we determindine lattice coupling constagtcorre-
sponding to the unitary regime by using Lischer’s formul@] & in Ref. [21], without imposing
a spherically symmetric cutoff. This procedure yietds 5.144 in the unitary limit. Secondly, we
use the compact, continuous Hubbard-Stratonovich [2Bkfoamation

1 T

exp(1ghyf;) = _n/ndai [1+Bsin(g;) ;] [1+Bsin(g;) A ], (2.2)
whereg; (not to be confused with the spin projection) is the auxjliield, with B?/2 = exp(1g) —
1, andr denotes the lattice spacing in the imaginary time directiva find that a time step~ 0.05
is sufficiently small to render temporal discretizatioroesrinsignificant. The above representation
(referred to as “Type 4” in Ref. [23]) was found to be supemoth respect to acceptance rate,
decorrelation and signal-to-noise properties than theensonventional unbounded and discrete
forms [24]. Finally, the use of a continuous auxiliary fieldbas us to perform global updates
using the Hybrid Monte Carlo (HMC) algorithm [16]. Our impbentation of the HMC algorithm
does not use pseudofermions but rather relies on a direxttlatibn of the fermion determinant in
a purely spatial rather than spacetime formulation [17]adldition, we use Fourier acceleration
to propagate states in imaginary time. This enables glopdhtes at all temperatures and lattice
sizes, and scales approximately-a®/?logV (at fixed temperature) for moderate spatial lattice
volumesV, to be contrasted with the V2 scaling of approaches based on local updates.

3. Resultsand conclusions

We have performed calculations at zero as well as finite temtyp, in the former case using
an approach similar to Ref. [23]. Our main results corredptm40— 50 particles aiN, = 10
and 70— 80 particles atN, = 12, in addition to limited data foN, = 14. In Fig. 1 (left panel),
we show the momentum distributiortk) as a function of temperatuie/s-. We have computed
n(k) by averaging over the angular directions on the lattice af ageover the imaginary-time
slices. In this way, we find that 200 uncorrelated auxiliary field samples for each datapgiues
excellent statistics fon(k). Multiplying n(k) by k*, as plotted in the right panel of Fig. 1, we find
a maximum ak ~ k- and a leveling out at high momenta, with the asymptotic regaetting in
at approximately &-, at the lowest temperatures. There is no a priori reasorhibbasymptotic
regime to set in at such low momenta; our work is the first towpoiut this fortunate situation.
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We study the temperature dependence of this “plateau”, wdillows us to determine the contact
C/(Nkg) as a function of temperature. The corresponding resultgieea in Fig. 2, together with

a comparison with other theoretical predictions. Our tssnbicate thah(k) follows the expected
~ k=% dependence accurately up to at ldast4k:, at which point the signal deteriorates, possibly
due to lattice effects.
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Figure 1. (Color online) Right panel: Momentum distributioiik) from QMC for N, = 10 as a function
of k/kg, for various temperatures ranging from zeroltéer ~ 0.5. The solid lines are intended to guide
the eye, and the statistical errors are of the size of the sisninset:n(k) for N, = 14 in a log-log scale,
showing the asymptotis k=4 behavior. Left panel: Plot of @ (k/kg)*n(k) for N, = 12 as a function of
k/ke atT/gz = 0.178 and 0404. The “plateaux” at largk/k: give the intensive dimensionless quantity
C/(Nkg). At low T/g, the asymptotic region is reachedlatk: ~ 2. Inset: N, = 10 results afl =0
showing only slight dependence on the time step

Our results show that the cont&egrows with temperature well beyond the superfluid phase,
which is suggestive of a pedk, .~ 3.4 atT /& ~ 0.4. This scenario agrees qualitatively with
Ref. [25], as well as Ref. [26]. Sin€@measures the number of particle pairs (of both spins) whose
separation is small, the appearance of a maximum indicateslaancement in such short-range
correlations. We find the scale at which #ie law sets in (see Fig. 1) to be~ 2k at finite T /&¢
and somewhat lower for the ground state.

In summary, we have computed the momentum distributid) and the contadE/(Nkg) for
the UFG at zero and finite temperature, using a lattice foatrar of the many-body problem, in
conjunction with the HMC algorithm. Our results represdsat first fully non-perturbative calcula-
tion of n(k) free of uncontrolled approximations. We find that the contad@ = O takes the value
~ 2.95+0.10 and increases as a functionlofe; in the low- and intermediate-temperature regimes
that we have explored, which is consistent with the phonamidated scenario of Ref. [25]. Our
results complement the calculations of Refs. [25, 26, 27, @& are suggestive of a maximum
inC/(Nkg) atT /& ~ 0.4, which agrees qualitatively with Ref. [26] but disagregthwRef. [27].
While calculations at higher temperatur¢e ~ 1 are feasible, an improved understanding of the
finite density effects is clearly called for.



The unitary Fermi gas. momentum distribution and contact Joaquin E. Drut

LA B B A B R

T-matrix, Palestini et al. - -~ ]
a5 L T-matrix, Enss et al. —
' Virial, 2" order +----

Virial, 3" order ==~ 1
N, =10,p=0.04 =~

)

4 [ ! p=0.05 e ]

i i p=0.07 —ai
i it N,=12,p=0.03 —e— |
[ i 0=004 = |
235 1 p=005 e ]

2t ! %E Ny =14, p=0.04 —m—

A/ - . R

A i E : DiagC |
O I "\ i ]
3‘% A \ i
i ‘. \ ]

Figure 2: (Color online) Summary of QMC results f&/(Nkz) as a function ofT /&, as determined
from the largek/kz behavior ofn(k). The errorbars are dominated by systematics related toetidual
fluctuations in the plateaux, as shown in the previous figtight panel). Also shown are the t-matrix
calculations of Ref. [26, 27], the virial expansion of R&X8] and the diagrammatic Monte Carlo result of
Ref. [29].
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