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The Unitary Fermi Gas (UFG) is one of the most strongly interacting systems known to date, as

it saturates the unitarity bound on the quantum mechanical scattering cross section. The UFG

corresponds to a two-component Fermi gas in the limit of short interaction range and large scat-

tering length, and is currently realized in ultracold-atomexperiments via Feshbach resonances.

While easy to define, the UFG poses a challenging quantum many-body problem, as it lacks any

characteristic scale other than the density. As a consequence, accurate quantitative predictions of

the thermodynamic properties of the UFG require Monte Carlocalculations. However, significant

progress has also been made with purely analytical methods.Notably, in 2005 Tan derived a set

of exact thermodynamic relations in which a universal quantity known as the "contact" C plays

a crucial role. Recently, C has also been found to determine the prefactor of the high- frequency

power-law decay of correlators as well as the right-hand-sides of shear- and bulk viscosity sum

rules. The contact is therefore a central piece of information on the UFG in equilibrium as well

as away from equilibrium. In this talk we describe some of theknown aspects of Fermi gases

at and around unitarity, show our latest Monte Carlo resultsfor the contact at finite temperature,

and summarize the open questions in the field, some of which weare starting to answer using

large-scale Monte Carlo calculations by adapting methods from Lattice QCD.
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1. Introduction

In recent years, our understanding of universality [1] in non-relativistic many-body quantum
mechanics has increased dramatically. By universality we mean independence from the details
of the interaction, in the same sense as in the context of second-order phase transitions, but in the
absence of long-range correlations throughout the system (except potentially at special points in the
phase diagram). Among the systems displaying this property, perhaps the most dramatic example
is the so-called unitary Fermi gas (UFG). This system is a two-component Fermi gas tuned to the
limit of vanishing interaction ranger0 and large s-wave scattering lengthas, and is termed "unitary"
because it saturates the unitarity bound imposed on the scattering cross section by the unitarity of
quantum mechanics. In short, the unitary gas is a resonant quantum mechanical many-body system.

A few years ago, the unitary limit was realized in metastableultracold atomic clouds in various
laboratories around the world (see Ref. [2] for a review of the experimental situation) and has
been under intense scrutiny by the atomic, molecular and optical physics (AMO) community ever
since [3]. Interest in the UFG transcends those areas, however, with a considerable amount of
research being carried out within the nuclear physics community well before and after the first
AMO experiments [4]. This, of course, is itself a manifestation of the universality of the UFG,
as nuclear systems characteristically display short ranges and unnaturally large scattering lengths,
although in a vastly different absolute scale than atomic clouds, the natural scale being in each case
the Fermi momentumkF .

More recently, the limit 0← kF r0≪ 1≪ kFas→ ∞ has been shown to imply non-relativistic
conformal invariance, as described in Ref. [5]. In turn, this results in a set of non-trivial relations
between the system in homogeneous space and in a harmonic trap, as first shown in Ref. [6, 7]. In
a separate line of research, short-distance correlations were shown by Tan [8] and others [9, 10] to
be completely encoded in a quantityC, which Tan called the “contact”. Specifically, we may define
the contact as

C ≡ lim
k→∞

k4nσ (k), (1.1)

wherenσ (k) is the momentum distribution for spinσ expressed as a thermal average. This re-
markable property stems in part from the short-range natureof the interaction, which implies that
at resonance the many-body wavefunction is essentially that of a free gas, with the added bound-
ary condition that it diverges as 1/r when two coordinates are set to a short distance apartr [11].
Following the work of Tan and others, the last couple of yearshave seen considerable activity
extending the analysis of short-range correlations in many-body systems to systems away from
unitarity as well as to different dimensions [12] and to a growing set of thermodynamic and even
hydrodynamic quantities [13, 14]. The latter, in particular, point to the fact thatC is relevant not
only in equilibrium but alsoaway from equilibrium (see Ref. [15] for a comprehensive review).

In spite of experimental advances and progress from the formal and analytic points of view,
the UFG remains a challenging many-body problem. The reasonfor this is that, while resonant and
therefore strongly interacting, the UFG has as few scales asa non-interacting Fermi gas. Enhanced
symmetries aside, such a lack of scales implies lack of smallparameters to perform an expansion,
such that non-perturbative numerical methods are required. Indeed, while we know that Tan’s
contact plays a crucial role in the dynamics of the UFG, the only way to determine it accurately
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and reliably is by using numerical methods such as Quantum Monte Carlo (in any of its various
incarnations, in particular on the lattice).

The work shown here represents the first attempt to determinethe contact at finite temperature
in a non-perturbative fashion. To this end, we have adapted methods from Lattice QCD, namely
Hybrid Monte Carlo [16] and applied them to the calculation of the momentum distribution of the
UFG. The next section outlines the main features of the algorithm and Sec. 3 shows our results and
conclusions, which were first published in Ref. [18].

2. Algorithm & lattice formulation

The lattice formulation we have used for this work follows closely that of Ref. [19], but differs
in at least three notable aspects. Firstly, we determine thebare lattice coupling constantg corre-
sponding to the unitary regime by using Lüscher’s formula [20] as in Ref. [21], without imposing
a spherically symmetric cutoff. This procedure yieldsg≃ 5.144 in the unitary limit. Secondly, we
use the compact, continuous Hubbard-Stratonovich [22] transformation

exp
(

τgn̂↑in̂↓i
)

=
1

2π

∫ π

−π
dσi

[

1+ Bsin(σi) n̂↑i
][

1+ Bsin(σi) n̂↓i
]

, (2.1)

whereσi (not to be confused with the spin projection) is the auxiliary field, with B2/2≡ exp(τg)−

1, andτ denotes the lattice spacing in the imaginary time direction. We find that a time stepτ ≃ 0.05
is sufficiently small to render temporal discretization errors insignificant. The above representation
(referred to as “Type 4” in Ref. [23]) was found to be superiorwith respect to acceptance rate,
decorrelation and signal-to-noise properties than the more conventional unbounded and discrete
forms [24]. Finally, the use of a continuous auxiliary field allows us to perform global updates
using the Hybrid Monte Carlo (HMC) algorithm [16]. Our implementation of the HMC algorithm
does not use pseudofermions but rather relies on a direct calculation of the fermion determinant in
a purely spatial rather than spacetime formulation [17]. Inaddition, we use Fourier acceleration
to propagate states in imaginary time. This enables global updates at all temperatures and lattice
sizes, and scales approximately as∼ V 2 logV (at fixed temperature) for moderate spatial lattice
volumesV , to be contrasted with the∼V 3 scaling of approaches based on local updates.

3. Results and conclusions

We have performed calculations at zero as well as finite temperature, in the former case using
an approach similar to Ref. [23]. Our main results correspond to 40− 50 particles atNx = 10
and 70− 80 particles atNx = 12, in addition to limited data forNx = 14. In Fig. 1 (left panel),
we show the momentum distributionn(k) as a function of temperatureT/εF . We have computed
n(k) by averaging over the angular directions on the lattice as well as over the imaginary-time
slices. In this way, we find that∼ 200 uncorrelated auxiliary field samples for each datapointgives
excellent statistics forn(k). Multiplying n(k) by k4, as plotted in the right panel of Fig. 1, we find
a maximum atk ≃ kF and a leveling out at high momenta, with the asymptotic regime setting in
at approximately 2kF , at the lowest temperatures. There is no a priori reason for the asymptotic
regime to set in at such low momenta; our work is the first to point out this fortunate situation.
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We study the temperature dependence of this “plateau”, which allows us to determine the contact
C/(NkF) as a function of temperature. The corresponding results aregiven in Fig. 2, together with
a comparison with other theoretical predictions. Our results indicate thatn(k) follows the expected
∼ k−4 dependence accurately up to at leastk≃ 4kF , at which point the signal deteriorates, possibly
due to lattice effects.
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Figure 1: (Color online) Right panel: Momentum distributionn(k) from QMC for Nx = 10 as a function
of k/kF , for various temperatures ranging from zero toT/εF ≃ 0.5. The solid lines are intended to guide
the eye, and the statistical errors are of the size of the symbols. Inset:n(k) for Nx = 14 in a log-log scale,
showing the asymptotic∼ k−4 behavior. Left panel: Plot of 3π2(k/kF)4n(k) for Nx = 12 as a function of
k/kF at T/εF = 0.178 and 0.404. The “plateaux” at largek/kF give the intensive dimensionless quantity
C/(NkF). At low T/εF , the asymptotic region is reached atk/kF ≃ 2. Inset: Nx = 10 results atT = 0
showing only slight dependence on the time stepτ.

Our results show that the contactC grows with temperature well beyond the superfluid phase,
which is suggestive of a peakCmax≃ 3.4 at T/εF ≃ 0.4. This scenario agrees qualitatively with
Ref. [25], as well as Ref. [26]. SinceC measures the number of particle pairs (of both spins) whose
separation is small, the appearance of a maximum indicates an enhancement in such short-range
correlations. We find the scale at which thek−4 law sets in (see Fig. 1) to bek≃ 2kF at finiteT/εF

and somewhat lower for the ground state.
In summary, we have computed the momentum distributionn(k) and the contactC/(NkF) for

the UFG at zero and finite temperature, using a lattice formulation of the many-body problem, in
conjunction with the HMC algorithm. Our results represent the first fully non-perturbative calcula-
tion of n(k) free of uncontrolled approximations. We find that the contact at T = 0 takes the value
≃ 2.95±0.10 and increases as a function ofT/εF in the low- and intermediate-temperature regimes
that we have explored, which is consistent with the phonon-dominated scenario of Ref. [25]. Our
results complement the calculations of Refs. [25, 26, 27, 28], and are suggestive of a maximum
in C/(NkF) at T/εF ≃ 0.4, which agrees qualitatively with Ref. [26] but disagrees with Ref. [27].
While calculations at higher temperatureT/εF ∼ 1 are feasible, an improved understanding of the
finite density effects is clearly called for.
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Figure 2: (Color online) Summary of QMC results forC/(NkF) as a function ofT/εF , as determined
from the largek/kF behavior ofn(k). The errorbars are dominated by systematics related to the residual
fluctuations in the plateaux, as shown in the previous figure (right panel). Also shown are the t-matrix
calculations of Ref. [26, 27], the virial expansion of Ref. [28] and the diagrammatic Monte Carlo result of
Ref. [29].
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