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Exact bounds on the free energy in QCD
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We consider the free energy W [J] = Wk(H) of QCD coupled to an external source Jb
µ(x) =

Hb
µ cos(k · x), where Hb

µ is, by analogy with spin models, an external “magnetic” field with a
color index that is modulated by a plane wave. We report an optimal bound on Wk(H) and an
exact asymptotic expression for Wk(H) at large H. They imply confinement of color in the sense
that the free energy per unit volume Wk(H)/V and the average magnetization m(k,H) = 1

V
∂Wk(H)

∂H

vanish in the limit of constant external field k→ 0. Recent lattice data indicate a gluon propagator
D(k) which is non-zero, D(0) 6= 0, at k = 0. This would imply a non-analyticity in Wk(H) at
k = 0. We also give some general properties of the free energy W (J) for arbitrary J(x). Finally
we present a model that is consistent with the new results and exhibits (non)-analytic behavior.
Direct numerical tests of the bounds are proposed.
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1. Introduction

Recent numerical studies on large lattices of the gluon propagator D(k) in Landau gauge in
3 and 4 Euclidean dimensions, reviewed recently in [1], yield finite values for D(0) 6= 0 [2] - [7],
in apparent disagreement with the theoretical expectation that D(0) = 0, originally obtained by
Gribov [8], and argued in [9]. The argument [9] which leads to D(0) = 0, relies on the hypothesis
that the free energy W (J) in the presence of sources J is analytic in J at low momentum k. That
hypothesis should perhaps be dropped in view of the apparent disagreement with the lattice data.
This is of interest because a non-analyticity in the free energy is characteristic of a change of phase.

The free energy W (J) enters the picture because it is the generating functional of the connected
gluon correlators. In particular the gluon propagator is a second derivative of W (J) at J = 0,

Dab
µν(x,y) =

δ 2W (J)
δJa

µ(x)δJb
ν(y)

∣∣∣
J=0

. (1.1)

The free energy W (J) in the presence of sources J is given by

expW (J) = 〈exp(J,A)〉

=
∫

Ω

dA ρ(A)exp(J,A), (1.2)

where µ,ν are Lorentz indices, and a,b are color indices, and

(J,A) =
∫

dDx Jb
µ(x)A

b
µ(x). (1.3)

The integral over A is effected in Landau gauge ∂µAµ = 0, and the domain of integration is re-
stricted to the Gribov region Ω, a region in A-space where the Faddeev-Popov operator is non-
negative, M(A)≡−∂µDµ(A)≥ 0. We use continuum notation and results, but we have in mind the
limit of lattice QCD in the scaling region, that is gauge-fixed to the Landau (or Coulomb) gauge by
a numerical algorithm that minimizes the Hilbert norm squared ||A||2, and thereby fixes the gauge
to the interior of the Gribov region. The vector potential, given by A(x) = gApert(x), is unrenormal-
ized, and has engineering dimension in mass units [A(x)] = 1 in all Euclidean dimension D, while
[H] = D− 1. (Our results also hold in the Coulomb gauge at fixed time, in which case D is the
number of space dimensions.) The density ρ(A) is a positive, normalized probability distribution
with support in the Gribov region Ω. Because there are Gribov copies inside Ω, ρ(A) is not unique
and, in general, depends on the minimization algorithm.

We consider a source that has the particular form

Jb
µ(x) = Hb

µ cos(kx1), (1.4)

where we have aligned the 1-axis along k, so the free energy

expWk(H) = 〈 exp[
∫

dDx Hb
µ cos(kx1)Ab

µ(x)] 〉, (1.5)

depends only on the parameters k and Hb
µ . This is sufficient to generate the gluon propagator for

momentum k,

Dab
i j (k) = 2

∂ 2wk(0)
∂Ha

i ∂Hb
j
, (1.6)

2



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
)
0
5
3

Free energy in QCD Daniel Zwanziger

where

wk(H)≡ Wk(H)

V
(1.7)

is the free energy per unit Euclidean volume. Because Aµ(x) is transverse, only the transverse
part of H is operative, and we impose kµHb

µ = 0, which yields Ha
1 = 0, and we write Ha

i , where
i = 2, ... D. By analogy with spin models, Hb

i may be interpreted as the strength of an external
“magnetic” field, with a color index b, which is modulated by a plane wave cos(kx1). (This external
magnetic field Hb

i , with color index b, should not be confused with the Yang-Mills color-magnetic
field Fb

i j .)
A rigorous bound for Wk(H) on a finite lattice was given in [9] which holds for any (numerical)

gauge fixing with support inside the Gribov region Ω. One can easily show that in the limit of large
lattice volume V , and in the continuum limit, this implies the Lorentz-invariant continuum bound
in D Euclidean dimensions,

wk(H)≤ (2Dk2)1/2|H|, (1.8)

where |H|2 = ∑µ,b(Hb
µ)

2. A model satisfying the bound (1.8) was recently exhibited in [10].
More recently, a stricter bound for wk(H) at finite H was obtained [11], that also holds for any

(numerical) gauge fixing with support inside the Gribov region Ω,

wk(H)≤ 2−1/2k tr[(HaHa)1/2]. (1.9)

Here HaHa is the matrix with elements Ha
i Ha

j . It has positive eigenvalues, and the positive square
root is understood. This bound is stricter than the old bound (1.8). It is in fact optimal for a
probability distribution ρ(A) of which it is known only that its support lies inside the Gribov region.

Expression (1.9) also provides the asymptotic form of wk(H) at large H, and infinite Euclidean
volume V [11] for any numerical gauge fixing with probability density ρ(A) with support that
reaches all boundary points of Ω, (but which may vanish on the boundary, ρ(A) = 0 for A ∈ ∂Ω)

wk,as(H) = 2−1/2k tr[(HaHa)1/2]. (1.10)

Either bound yields in the zero-momentum limit

w0(H) = lim
k→0

wk(H) = 0. (1.11)

As discussed in [9], this states that the system does not respond to a constant external color-
magnetic field no matter how strong. It is a consequence of the proximity of the Gribov horizon
in infrared directions. We shall return in the concluding section to the physical implications of this
result for confinement of color.

If wk(H) were analytic in H in the limit k→ 0, eq. (1.11) would imply that all derivatives of
the generating function w0(H) vanish, including in particular the gluon propagator (1.6) at k = 0,
D(0) = 0. However, as noted above, this disagrees with recent lattice data which indicate a finite
value, D(0) 6= 0, in Euclidean dimensions 3 and 4. If this is true, then wk(H) must become non-
analytic in H in the limit k→ 0. In order to get some insight about this, we examine the behavior
of an improved model that has the exact asymptotic behavior (1.10).
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2. General properties of free energy in QCD

The proof of the above results relies on properties of W (J) that hold for arbitrary Ja
µ(x) that are

notable for their generality and simplicity [11]. The asymptotic form of W (J) at large J is given by

Was(J)≡ lim
λ→∞

W (λJ)
λ

, (2.1)

and because of the convexity of W (J) we have the bound

W (J)≤Was(J). (2.2)

Moreover the asymptotic free energy is given by

Was(J) = maxA∈∂Ω(J,A), (2.3)

where ∂Ω is the boundary of the Gribov region, known as the Gribov horizon. Let this boundary
be described by the equation h(A) = 0, where h(A) is the so-called “horizon function”. Then, by
the Lagrange multiplier method, the asymptotic form of the free energy is given by

Was(J) = (J,A∗) (2.4)

where A∗ = A∗(J) minimizes
I(A) = (J,A)−λh(A), (2.5)

and λ is a Lagrange multiplier. Thus A∗(J) is the solution of

J−λ
δh(A)

δA
= 0, (2.6)

and λ is determined by
h(A∗) = 0. (2.7)

3. Improved model

The model is defined by the expression for the free energy

wk,mod(H) = g(k)
{

tr
[(

I +
k2HaHa

2g2(k)

)1/2
− I
]
− tr ln

[
2−1
(

I +
k2HaHa

2g2(k)

)1/2
+2−1I

]}
, (3.1)

where g(k)≥ 0 is an as yet undetermined function, and HaHa is the matrix with elements Ha
i Ha

j , for
i, j = 2, ... D. This model possesses the following desirable features [11]: (i) It satisfies wk,mod(0) =
0, which is correct at H = 0 for a normalized probability distribution

∫
dA ρ(A) = 1. (ii) It has the

asymptotic limit

wk,as(H) = lim
µ→∞

wk,mod(µH)

µ
= 2−1/2k tr[(HaHa)1/2], (3.2)

that is correct at large H for any numerical gauge fixing that is strictly positive in the interior of the
Gribov region Ω. (iii) It satisfies the optimal bound

wk,mod(H)≤ 2−1/2k tr[(HaHa)1/2], (3.3)
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which implies that the generating function vanishes at k = 0, w0,mod(H) = 0. (iv) The matrix of
second derivatives is positive in the sense that

va
i

∂ 2wk,mod(H)

∂Ha
i ∂Hb

j
vb

j ≥ 0 (3.4)

holds for all va
i and Ha

i , as required for this matrix to be a covariance.
Because of the property w0,mod(H) = 0, there must be some non-analyticity if, as indicated by

numerical calculations, the gluon propagator D(k) at k = 0 is positive D(0)> 0. It is instructive to
see what kind of analyticity this would be in our model. Let λ (H) > 0 be the largest eigenvalue
of the matrix Ha

i Ha
j . Inspection of (3.1) shows that wk,mod(H) is analytic in H inside a radius of

convergence

λ (H) =
2g2(k)

k2 . (3.5)

Moreover from (3.1) we have at small H,

wk,mod(H) =
k2

8g(k)
Ha

i Ha
i +g(k)O[k4H4/g4(k)]. (3.6)

For the gluon propagator D(k) ∼ ∂ 2wk,mod(0)
∂Ha

i ∂Hb
j
∼ k2/g(k) to be finite at k = 0, as suggested by the

lattice data, we must have g(k) = const k2 near k = 0. In this case the coefficient of the H4 term is
of order 1/k2, which diverges as k→ 0, as do all higher order coefficients. Moreover the radius of
convergence of the series expansion of wk,mod(H) is λ (H) = O(k2), which vanishes like k2.

Suppose that g(k) has a power law behavior g(k)∼ kν at k = 0. Then the radius of convergence
behaves like λ (H) ∼ k2ν−2, which approaches 0 with k for ν > 1. The gluon propagator behaves
like D(k) ∼ k2−ν , and wk,mod(H) is non-analytic in H at k = 0 when the propagator has a power
law D(k) ∼ kp with p < 1. Gribov’s original calculation gave D(k) ∼ k2/m4 which corresponds
to g(k) = O(m4), and wk,mod(H) is analytic in H at k = 0, with a radius of convergence λ (H) =

O(k−2)→ ∞ for k→ 0.

4. Conclusion

By analogy with spin models, we define, for each momentum k, the analog of the bulk mag-
netization in the presence of the external “magnetic” field Ha

i ,

Ma
i (k,H) =

∂Wk(H)

∂Ha
i

, (4.1)

which describes the reaction of the spin system to the external color-magnetic field. Its physical
meaning in gauge theory is apparent from (1.5) which yields,

Mb
µ(k,H) = 〈

∫
dDx cos(kx1)Ab

i (x)〉H

= (1/2)〈 ab
i (k)+ab

i (−k) 〉H . (4.2)
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Thus the “bulk magnetization” is in fact the k-th fourier component of the gauge field in the pres-
ence of the external magnetic field. We also define the magnetization per unit (Euclidean) volume

ma
i (k,H) =

Ma
i (k,H)

V
, (4.3)

given by

ma
i (k,H) =

∂wk(H)

∂Ha
i

. (4.4)

The asymptotic free energy (1.10) determines the asymptotic magnetization per unit volume
at large H,

ma
i,as(k,H) =

∂wk,as(H)

∂Ha
i

= 2−1/2k[(HbHb)−1/2]i jHa
j . (4.5)

Its magnitude is given by (ma
i,asm

a
i,as)(k,H) = k2/2, and we obtain the simple formula

lim
H→∞

(ma
i ma

i )(k,H) = k2/2, (4.6)

which holds for any numerical gauge fixing with support extending up to the boundary of the
Gribov region Ω.

We arrive at the remarkable conclusion that in the limit of constant external magnetic field, k→
0, the color magnetization per unit volume vanishes, no matter how strong the external magnetic
field,

lim
k→0

lim
H→∞

ma
i (k,H) = 0. (4.7)

Thus the system does not respond to a constant external color-magnetic field. In this precise sense
the color degree of freedom mb

i (k,H) = 1
2V 〈a

b
i (k)+ab

i (−k)〉H is absent at k = 0. This conclusion
holds whether or not the free energy wk(H) is analytic in H in the limit k→ 0. Lattice data would
indicate that it is not analytic. Besides reporting this result, we have presented a model, defined in
(3.1), which saturates the asymptotic limit (1.10), and exhibits confinement of color. As we have
seen, Wk,mod(H) may be either analytic in H, or not, at k = 0, depending on the behavior of g(k)
at k = 0, but in either case, the conclusion stands, that the constant color degree of freedom of the
gauge field is confined.

Equations (1.9) and (1.10) may be checked numerically, at least in principle, by using the
formula expWk(H) = 〈exp[

∫
dDx Hb

i cos(kx1)Ab
i (x)]〉 to make a numerical determination of the

generating function itself. For large values of H this may fluctuate too wildly. Alternatively one
may measure the magnetization from the formula Mb

µ(k,H) = 〈
∫

dDx cos(kx1)Ab
i (x)〉H , where the

source term Hb
i cos(kx1)Ab

i (x) is included in the action that one simulates. This requires simulating
the theory fixed in the Landau gauge instead of generating an ensemble from the gauge-invariant
Wilson action then gauge fixing. It may be convenient to do this by numerical simulation of stochas-
tic quantization [13] because that avoids calculating the Faddeev-Popov determinant explicitly.

Finally we wish to emphasize the generality and simplicity of the results on W (J) for arbitrary
J(x) that are presented in sect. 2.
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